प्रतिलोम त्रिकोणमिति Important Questions | Class 12th Maths | Full Concepts & Solutions
Автор: Skill Study Centre
Загружено: 2025-11-22
Просмотров: 68
Описание:
1. Class 12 Maths | Inverse Trigonometry Important Questions with Solutions | Board Exam Special
2. प्रतिलोम त्रिकोणमिति Important Questions | Class 12th Maths | Full Concepts & Solutions
3. Inverse Trigonometric Functions – Top Questions for Boards | Full Explanation Hindi
4. प्रतिलोम त्रिकोणमिति | 1 वीडियो में पूरा चैप्टर + महत्वपूर्ण प्रश्न समाधान
📌 YouTube Description (Hindi + English Mix)
Description:
इस वीडियो में हम प्रतिलोम त्रिकोणमिति (Inverse Trigonometric Functions) के सभी महत्वपूर्ण प्रश्नों को आसान भाषा में समझेंगे।
यह वीडियो Class 12th Board Exams, JEE, NEET, और Competitive Exams के लिए बेहद उपयोगी है।
वीडियो में शामिल हैं—
✔ Domain & Range
✔ Principal Values
✔ Important Identities
✔ NCERT + Board Pattern Questions
✔ Previous Year Questions (PYQ)
✔ Step-by-step Solutions
🔔 Video को Like, Share और Subscribe करना न भूलें!
🎓 Class 12th Maths के लिए यह वीडियो जरूर देखें।
Keywords:
inverse trigonometry, inverse trigonometric functions, class 12 maths, important questions, board exam, ncert maths, प्रतिलोम त्रिकोणमिति, maths live class, board preparation, class 12 important questions
---
📌 Important Questions with Solutions (Short Notes Form)
Q1. Find the value of
\sin^{-1}\left(\frac{1}{2}\right)
Solution:
\sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}--
Q2. Find the value of
\cos^{-1}\left(-\frac{1}{2}\right)
Solution:
Principal value of lies in
\cos^{-1}\left(-\frac{1}{2}\right)=\frac{2\pi}{3}
Q3. Simplify:
\tan^{-1}(1)+\tan^{-1}(2)
Solution:
Using identity:
\tan^{-1}a+\tan^{-1}b=\tan^{-1}\left(\frac{a+b}{1-ab}\right)
Here,
a=1, b=2
\tan^{-1}(1)+\tan^{-1}(2)=\tan^{-1}\left(\frac{3}{1-2}\right)=\tan^{-1}(-3)
=\ -\tan^{-1}(3)
---
Q4. Find the value of:
\sin^{-1}(x)+\cos^{-1}(x)
Solution:
Identity:
\sin^{-1}(x)+\cos^{-1}(x)=\frac{\pi}{2}
---
Q5. Solve:
\cos^{-1}\left(\frac{2}{\sqrt{5}}\right) - \sin^{-1}\left(\frac{1}{\sqrt{5}}\right)
Solution:
Use identity:
\cos^{-1}(x) = \sin^{-1}(\sqrt{1-x^2})
\cos^{-1}\left(\frac{2}{\sqrt{5}}\right) = \sin^{-1}\left(\frac{1}{\sqrt{5}}\right)
So,
\boxed{0}
---
Q6. Evaluate:
\tan^{-1}\left(\frac{3}{4}\right)+\cot^{-1}\left(\frac{4}{3}\right)
Solution:
\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}
\boxed{\frac{\pi}{2}}
---
Q7. Prove:
\sin^{-1}(x) = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)
Proof:
Let
\sin^{-1}(x)=\theta \Rightarrow x=\sin\theta
\cos\theta=\sqrt{1-x^2}
\tan\theta=\frac{x}{\sqrt{1-x^2}}
So,
\theta = \tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)
Hence proved ✔
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: