Implementing GradCAM on UNet with PyTorch for Multi-Class Segmentation
Автор: Idiot Developer
Загружено: 2025-07-01
Просмотров: 203
Описание:
In this video, we’ll show you how to apply Grad-CAM (Gradient-weighted Class Activation Mapping) to the U-Net architecture for multi-class semantic segmentation using PyTorch. You’ll learn how to visualize which parts of the image influence the model's decisions the most — a powerful tool for debugging and interpreting deep learning models.
⏱️ Timestamps:
00:00 - Introduction
00:15 - What is GradCAM?
01:00 - Previous Multiclass Segmentation Code
01:40 - GradCAM Implementation
16:00 - Executing the GradCAM & Visualization
20:57 - Final Thoughts & Wrap-up
🔍 What You’ll Learn:
✅ How U-Net works for image segmentation
✅ How to implement Grad-CAM for segmentation models
✅ How to select the right layers for visualization
✅ Visualizing feature maps and model attention
🔗 GitHub Repo: https://github.com/nikhilroxtomar/Mul...
📸 Dataset: https://figshare.com/articles/dataset...
Multiclass Image Segmentation in PyTorch: • Multiclass Image Segmentation in PyTorch |...
💖 Support My Work:
☕ Buy me a coffee: https://www.buymeacoffee.com/nikhilro...
💬 Join the channel as a member: / @idiotdeveloper
🌐 Stay Connected:
📘 Blog: idiotdeveloper.com | sciencetonight.com
📢 Telegram: https://t.me/idiotdeveloper
📘 Facebook: / idiotdeveloper
🐦 Twitter: / nikhilroxtomar
📸 Instagram: / nikhilroxtomar
🎁 Patreon: / idiotdeveloper
👍 If you find this tutorial helpful, like, subscribe, and drop a comment below with your thoughts or questions! Your support helps me keep creating high-quality content ❤️
Повторяем попытку...

Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: