Hamilton’s Equations Explained: Pendulum Constrained to a Parabola
Автор: Learn with Julio | Aprende con Julio
Загружено: 2021-03-09
Просмотров: 3281
Описание:
In this video, we dive into the elegant framework of Hamiltonian mechanics to analyze a simple pendulum constrained to move along a parabolic path. Using the principles of analytical mechanics, we derive the Hamiltonian, obtain the canonical equations of motion, and explore how the system evolves over time.
This is a perfect example of how constraints shape the dynamics of a system, and how Hamilton’s formulation offers a powerful alternative to Newtonian and Lagrangian mechanics.
🔍 What You’ll Learn:
How to model a constrained system using Hamiltonian mechanics
Derivation of the Hamiltonian for a pendulum on a parabola
Interpretation of generalized coordinates and momenta
Canonical equations of motion and their physical meaning
Phase space perspective of the motion
📘 Level: Advanced (Classical Mechanics / Analytical Mechanics)
📈 Ideal for: University students, educators, physics enthusiasts
🏷️ Keywords / Palabras clave
Hamiltonian mechanics
Constrained motion
Analytical mechanics
Canonical equations
Phase space
Parabolic constraint
Simple pendulum physics
Advanced classical mechanics
Física analítica
Ecuaciones canónicas
Mecánica clásica avanzada
Péndulo en parábola
Movimiento con restricciones
Energía y dinámica
🔖 Hashtags
English:
#HamiltonianMechanics #ClassicalMechanics #AnalyticalMechanics #PhysicsLecture #ConstrainedSystems #PhaseSpace #PhysicsAnimation
Spanish:
#MecánicaHamiltoniana #FísicaClásica #EcuacionesDeHamilton #SistemaRestringido #EspacioFase #Péndulo #FísicaAvanzada
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: