ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

326 - Cell type annotation for single cell RNA seq data​

Автор: DigitalSreeni

Загружено: 2023-06-03

Просмотров: 6290

Описание: 326 - Cell type annotation for single-cell RNA-seq data

Code from this video is available here: https://github.com/bnsreenu/python_fo...

Previous video: Transcriptomics Unveiled – An In-Depth Exploration of Single Cell RNASeq Analysis using python:    • 325: Transcriptomics Unveiled – An In-Dept...  

GitHub link for the scsa library: https://github.com/bioinfo-ibms-pumc/...

Reference paper: Cao Y, Wang X and Peng G (2020) SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data. Front. Genet. 11:490. doi: https://doi.org/10.3389/fgene.2020.00490

https://www.frontiersin.org/articles/...

Description:

scRNA-seq permits comparison of the transcriptomes of individual cells ​that helps to assess transcriptional similarities and differences within a population of cells​. It also helps in identifying rare cell populations that would otherwise go undetected in analyses of pooled cells​. There are many techniques for scRNA-seq
including Visium, Slide-seq, SeqFISH, MERFISH, and Drop-seq. For all these techniques, the end result is a table that represents the gene expression profiles of individual cells.​

​The table typically consists of rows representing individual cells or spatial locations within the tissue and columns representing genes. The values in the table correspond to the gene expression intensities or counts for each cell or location.​ Downstream analysis includes, quality control, dimensionality reduction, clustering, differential expression analysis, cell type identification, spatial analysis, and visualization.

This video explains the process of cell type identification using the scsa library in python. Cell type annotation is the process of assigning or identifying the specific cell types or cell identities present in a biological sample, based on gene expression patterns. ​

The SCSA library allows for accurate cell type annotation by comparing scRNA-seq data to reference cell type profiles.​ It calculates specificity scores for each cell type, measuring the likelihood of a cell belonging to a specific cell type based on its gene expression profile.​ The library includes pre-built reference databases for various organisms, enabling cell type annotation in different biological contexts.​ Users can also create custom reference databases tailored to their specific experimental systems or incorporate external reference datasets.​

​

​

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
326 - Cell type annotation for single cell RNA seq data​

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

304 - Augmentation of histology images​ to train stain-agnostic deep learning models

304 - Augmentation of histology images​ to train stain-agnostic deep learning models

325: Transcriptomics Unveiled – An In-Depth Exploration of Single Cell RNASeq Analysis using python

325: Transcriptomics Unveiled – An In-Depth Exploration of Single Cell RNASeq Analysis using python

The World's Most Important Machine

The World's Most Important Machine

Mr Bean does 'Blind Date' | Comic Relief

Mr Bean does 'Blind Date' | Comic Relief

Normalization methods for single-cell RNA-Seq data (high-level overview)

Normalization methods for single-cell RNA-Seq data (high-level overview)

Single Cell Sequencing - Eric Chow (UCSF)

Single Cell Sequencing - Eric Chow (UCSF)

Single cell RNA sequencing overview | ScRNA seq vs Bulk seq | chemistry of ScRNA seq |Bio Techniques

Single cell RNA sequencing overview | ScRNA seq vs Bulk seq | chemistry of ScRNA seq |Bio Techniques

Standard scRNAseq preprocessing workflow with Seurat | Beginner R

Standard scRNAseq preprocessing workflow with Seurat | Beginner R

Бывший рекрутер Google объясняет, почему «ложь» помогает получить работу.

Бывший рекрутер Google объясняет, почему «ложь» помогает получить работу.

Comprehensive Integration of Single Cell Data—Rahul Satija

Comprehensive Integration of Single Cell Data—Rahul Satija

You Were The Smart Kid... So What Went Wrong?

You Were The Smart Kid... So What Went Wrong?

Clustering and Markers Identification for ScRNA-Seq | Seurat Package Tutorial

Clustering and Markers Identification for ScRNA-Seq | Seurat Package Tutorial

Advanced Single Cell - RNA Velocity

Advanced Single Cell - RNA Velocity

StatQuest: A gentle introduction to RNA-seq

StatQuest: A gentle introduction to RNA-seq

Complete single-cell RNAseq analysis walkthrough | Advanced introduction

Complete single-cell RNAseq analysis walkthrough | Advanced introduction

4th scanpy session - Clustering and cell type annotation

4th scanpy session - Clustering and cell type annotation

Comparing single-cell RNA integration methods | Which is the best?

Comparing single-cell RNA integration methods | Which is the best?

How to do single-cell RNA velocity analysis | Complete introduction

How to do single-cell RNA velocity analysis | Complete introduction

Поиск маркеров и идентификация кластеров в РНК-секвенировании отдельных клеток с использованием S...

Поиск маркеров и идентификация кластеров в РНК-секвенировании отдельных клеток с использованием S...

Kelly Street: “Analysis of Single Cell T-Cell Receptor Sequencing”

Kelly Street: “Analysis of Single Cell T-Cell Receptor Sequencing”

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]