ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Solving Real-World Data Science Problems with LLMs! (Historical Document Analysis)

Автор: Keith Galli

Загружено: 2024-03-20

Просмотров: 19485

Описание: Learn data skills with hands-on exercises & tutorials at Datacamp!
https://datacamp.pxf.io/c/3588040/101...

In this video we walk through the process of analyzing historical documents using Python & Large Language Models. We start by setting up LLMs using both closed-source (OpenAI API) and open-source (Llama 2 via Ollama) options. Next, we walk through how we can leverage the LLMs to parse out entities from text. After this we actually start playing around with our data, loading in a specific subcategory of documents from Kaggle and see how we can connect pages from the same documents together. Once this is completed, we repeat the entity parsing process for our actual data to get pieces of information such as names, ages, and locations from our documents. Finally we analyze these entities to learn some insights from our document database.

Kaggle Dataset: https://www.kaggle.com/datasets/keith...
GitHub Repo: https://github.com/keithgalli/histori...
Project Website: https://freedmensbureau.info

Contributors:
Abdessalem Boukil (NLP Research & Analysis):   / abdessalem-boukil-37923637  
Trent Self (Kaggle Dataset Setup):   / trentonself  

If you enjoyed this project video, make sure to throw it a thumbs up & subscribe! Let me know in the comments if you have any questions. It would also be helpful for people to upvote the Kaggle dataset for visibility!

---------------------------

Video timeline!
0:00 - Video Overview & Reference Material
3:05 - Data & Code Setup
5:04 - Task #0: Configure LLM to use with Python (OpenAI API)
20:10 - Task #0 (continued): LLM Configuration with Open-Source Model (LLama 2 via Ollama)
27:39 - Task #1: Use LLM to Parse Simple Sentence Examples
41:22 - Sub-task #1: Convert string to Python Object
44:29 - Task #1 (continued): Use Open-Source LLM to Parse Sentence Examples w/ LangChain
56:24 - Quick note on a benefit of using LangChain (easily switching between models)
58:06 - Task #2 (warmup): Grab Apprenticeship Agreement rows from Dataframe
1:06:22 - Task #2: Connect Pages that Belong to the Same Documents
1:56:36 - Task #3: Parse out values from merged documents
2:12:44 - Task #4 (setup): Analyze Results
2:17:52 - Fixing up our results from task #3 quickly
2:20:41 - Task #4: Find the average age of apprentices in our merged contract documents
2:30:59 - Other analysis, wlho had the most apprentices?

-------------------------
If you are curious to learn how I make my tutorials, check out this video:    • How to Make a High Quality Tutorial Video!...  

Practice your Python Pandas data science skills with problems on StrataScratch!
https://stratascratch.com/?via=keith

Join the Python Army to get access to perks!
YouTube -    / @keithgalli  
Patreon -   / keithgalli  

*I use affiliate links on the products that I recommend. I may earn a purchase commission or a referral bonus from the usage of these links.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Solving Real-World Data Science Problems with LLMs! (Historical Document Analysis)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Solving Real-World Data Science Problems with Python! (Predicting Healthcare Insurance Costs)

Solving Real-World Data Science Problems with Python! (Predicting Healthcare Insurance Costs)

Fine-tuning Large Language Models (LLMs) | w/ Example Code

Fine-tuning Large Language Models (LLMs) | w/ Example Code

Solving real world data science tasks with Python Pandas!

Solving real world data science tasks with Python Pandas!

Machine Learning for Everybody – Full Course

Machine Learning for Everybody – Full Course

Real-World Data Analysis & Visualization with Python! (Olympics Dataset Analysis)

Real-World Data Analysis & Visualization with Python! (Olympics Dataset Analysis)

Вся память интернета: петабайты ОЗУ в БОЛЬШОМ обзоре дата-центра

Вся память интернета: петабайты ОЗУ в БОЛЬШОМ обзоре дата-центра

Русский след и Майкл Джексон. Чем примечателен новый компромат на Трампа

Русский след и Майкл Джексон. Чем примечателен новый компромат на Трампа

Complete Natural Language Processing (NLP) Tutorial in Python! (with examples)

Complete Natural Language Processing (NLP) Tutorial in Python! (with examples)

Самый важный алгоритм в машинном обучении

Самый важный алгоритм в машинном обучении

Solving Real-World Data Analysis Questions with Python! (Internet Usage Analysis)

Solving Real-World Data Analysis Questions with Python! (Internet Usage Analysis)

How Good are you at Data Science?? (Datacamp Platform Exploration)

How Good are you at Data Science?? (Datacamp Platform Exploration)

I Analyzed My Finance With Local LLMs

I Analyzed My Finance With Local LLMs

ChatGPT for Data Analytics: Full Course

ChatGPT for Data Analytics: Full Course

Complete Python Pandas Data Science Tutorial! (Reading CSV/Excel files, Sorting, Filtering, Groupby)

Complete Python Pandas Data Science Tutorial! (Reading CSV/Excel files, Sorting, Filtering, Groupby)

Solving Real-World Data Science Interview Questions! (with Python Pandas)

Solving Real-World Data Science Interview Questions! (with Python Pandas)

[1hr Talk] Intro to Large Language Models

[1hr Talk] Intro to Large Language Models

Translate Data Into Insights | Google Advanced Data Analytics Certificate

Translate Data Into Insights | Google Advanced Data Analytics Certificate

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Learning the Polars DataFrame Library!

Learning the Polars DataFrame Library!

Почему новый гиперкар Koenigsegg мощностью 2300 л.с. меняет всё?

Почему новый гиперкар Koenigsegg мощностью 2300 л.с. меняет всё?

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]