ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Exercise 2.3 Class 9 Maths | Factor Theorem

Exercise 2.3 Class 9 Maths

Exercise 2.3 Class 9

Exercise 2.3 Class 9 Maths NCERT

Exercise 2.3 Class 9 Maths NCERT solutions

rajan sir

best maths teacher class 9

factor theorem class 9

class 9 maths most important questions

Автор: RAJAN SIR

Загружено: 2025-04-03

Просмотров: 9839

Описание: #mathsclass9 #rajansir
Exercise 2.3 Class 9 Maths | Factor Theorem
Exercise 2.3 Class 9 Maths | Factor Theorem by ‪@rajansir07‬

online class 9811757843

Class 9 Maths Exercise 2.3
Chapter 2 Polynomials Class 9
Class 9 Maths NCERT Solutions Exercise 2.3
Polynomials Exercise 2.3 Class 9
Class 9 Maths Chapter 2 Exercise 2.3 Solutions
Polynomial Factorization Class 9

Class 9 Maths Full Chapter 2 Solutions

CBSE Class 9 Maths Polynomials

How to solve Exercise 2.3 Class 9

Easy way to solve Polynomials Class 9

#Class9Maths #Exercise2_3 #Polynomials #NCERTSolutions #MathsShorts #CBSEClass9 #MathsTricks #BoardExamTips
Class 9 Chapter 2 – Polynomials Exercise 2.4
1. Determine which of the following polynomials has (x + 1) a factor:

(i) x3+x2+x+1

Solution:

Let p(x) = x3+x2+x+1

The zero of x+1 is -1. [x+1 = 0 means x = -1]

p(−1) = (−1)3+(−1)2+(−1)+1

= −1+1−1+1

= 0

∴By factor theorem, x+1 is a factor of x3+x2+x+1

(ii) x4+x3+x2+x+1

Solution:

Let p(x)= x4+x3+x2+x+1

The zero of x+1 is -1. . [x+1= 0 means x = -1]

p(−1) = (−1)4+(−1)3+(−1)2+(−1)+1

= 1−1+1−1+1

= 1 ≠ 0

∴By factor theorem, x+1 is not a factor of x4 + x3 + x2 + x + 1

(iii) x4+3x3+3x2+x+1

Solution:

Let p(x)= x4+3x3+3x2+x+1

The zero of x+1 is -1.

p(−1)=(−1)4+3(−1)3+3(−1)2+(−1)+1

=1−3+3−1+1

=1 ≠ 0

∴By factor theorem, x+1 is not a factor of x4+3x3+3x2+x+1

(iv) x3 – x2– (2+√2)x +√2

Solution:

Let p(x) = x3–x2–(2+√2)x +√2

The zero of x+1 is -1.

p(−1) = (-1)3–(-1)2–(2+√2)(-1) + √2 = −1−1+2+√2+√2

= 2√2 ≠ 0

∴By factor theorem, x+1 is not a factor of x3–x2–(2+√2)x +√2
2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

(i) p(x) = 2x3+x2–2x–1, g(x) = x+1

Solution:

p(x) = 2x3+x2–2x–1, g(x) = x+1

g(x) = 0

⇒ x+1 = 0

⇒ x = −1

∴Zero of g(x) is -1.

Now,

p(−1) = 2(−1)3+(−1)2–2(−1)–1

= −2+1+2−1

= 0

∴By factor theorem, g(x) is a factor of p(x).

(ii) p(x)=x3+3x2+3x+1, g(x) = x+2

Solution:

p(x) = x3+3x2+3x+1, g(x) = x+2

g(x) = 0

⇒ x+2 = 0

⇒ x = −2

∴ Zero of g(x) is -2.

Now,

p(−2) = (−2)3+3(−2)2+3(−2)+1

= −8+12−6+1

= −1 ≠ 0

∴By factor theorem, g(x) is not a factor of p(x).

(iii) p(x)=x3–4x2+x+6, g(x) = x–3

Solution:

p(x) = x3–4x2+x+6, g(x) = x -3

g(x) = 0

⇒ x−3 = 0

⇒ x = 3

∴ Zero of g(x) is 3.

Now,

p(3) = (3)3−4(3)2+(3)+6

= 27−36+3+6

= 0

∴By factor theorem, g(x) is a factor of p(x
. Find the value of k, if x–1 is a factor of p(x) in each of the following cases:

(i) p(x) = x2+x+k

Solution:

If x-1 is a factor of p(x), then p(1) = 0

By Factor Theorem

⇒ (1)2+(1)+k = 0

⇒ 1+1+k = 0

⇒ 2+k = 0

⇒ k = −2

(ii) p(x) = 2x2+kx+√2

Solution:

If x-1 is a factor of p(x), then p(1)=0

⇒ 2(1)2+k(1)+√2 = 0

⇒ 2+k+√2 = 0

⇒ k = −(2+√2)

(iii) p(x) = kx2–√2x+1

Solution:

If x-1 is a factor of p(x), then p(1)=0

By Factor Theorem

⇒ k(1)2-√2(1)+1=0

⇒ k = √2-1

(iv) p(x)=kx2–3x+k

Solution:

If x-1 is a factor of p(x), then p(1) = 0

By Factor Theorem

⇒ k(1)2–3(1)+k = 0

⇒ k−3+k = 0

⇒ 2k−3 = 0

⇒ k= 3/2
Solution:

Let p(x) = x3–2x2–x+2

Factors of 2 are ±1 and ± 2

Now,

p(x) = x3–2x2–x+2

p(−1) = (−1)3–2(−1)2–(−1)+2

= −1−2+1+2

= 0
Now, Dividend = Divisor × Quotient + Remainder

(x+1)(x2–3x+2) = (x+1)(x2–x–2x+2)

= (x+1)(x(x−1)−2(x−1))

= (x+1)(x−1)(x-2)

(ii) x3–3x2–9x–5

Solution:

Let p(x) = x3–3x2–9x–5

Factors of 5 are ±1 and ±5

By trial method, we find that

p(5) = 0

So, (x-5) is factor of p(x)

Now,

p(x) = x3–3x2–9x–5

p(5) = (5)3–3(5)2–9(5)–5

= 125−75−45−5

= 0
Now, Dividend = Divisor × Quotient + Remainder

(x−5)(x2+2x+1) = (x−5)(x2+x+x+1)

= (x−5)(x(x+1)+1(x+1))

= (x−5)(x+1)(x+1)

(iii) x3+13x2+32x+20

Solution:

Let p(x) = x3+13x2+32x+20

Factors of 20 are ±1, ±2, ±4, ±5, ±10 and ±20

By trial method, we find that

p(-1) = 0

So, (x+1) is factor of p(x)

Now,

p(x)= x3+13x2+32x+20

p(-1) = (−1)3+13(−1)2+32(−1)+20

= −1+13−32+20

= 0

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Exercise 2.3 Class 9 Maths | Factor Theorem

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]