Maximum Performance of a Team | Greedy + Heap JavaScript Solution Explained | LeetCode Hard
Автор: Coding theory
Загружено: 2025-10-20
Просмотров: 4
Описание:
In this video, we solve the “Maximum Performance of a Team” problem using JavaScript, one of the most asked LeetCode Hard problems.
We combine Greedy strategy and Min Heap (Priority Queue) to achieve an O(n log n) efficient solution.
Problem Explanation:
We are given n engineers with speed and efficiency.
We must select at most k engineers to maximize:
Performance = (Sum of Speeds) * (Minimum Efficiency)
We sort engineers by efficiency (descending) and use a Min Heap to track the top k speeds while updating the maximum performance at each step.
Example:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 2 Output: 60
Concepts Covered:
Greedy Algorithm
Heap / Priority Queue
Sorting Optimization
Time Complexity: O(n log n)
JavaScript DSA Problem Solving
Perfect for DSA practice, coding interviews, and LeetCode preparation!
#JavaScript #LeetCode #CodingInterview #DataStructures #GreedyAlgorithm #Heap #PriorityQueue #LeetCodeHard #DSA #AlgorithmChallenge #CodingTheoryGuru #CodeWithMe #JavaScriptCoding #ProgrammingInterview #LearnDSA
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: