Ensuring Fairness in AI with Disparate Impact Analysis | Bias Detection in Machine Learning
Автор: H2O.ai
Загружено: 2025-05-22
Просмотров: 97
Описание:
Learn how Disparate Impact Analysis helps assess fairness in Driverless AI models and detect potential bias in decision-making. This method ensures AI models provide equitable outcomes across different demographic groups.
Key insights:
✅ Evaluate model fairness by analyzing disparate impact variables
✅ Compare treatment of different demographic groups (e.g., gender, race)
✅ Measure fairness using metrics like F1 score and cut-off probability
✅ Visualize classification outcomes and adverse impact ratios
✅ Utilize custom fairness recipes available on the H2O GitHub repository
With AI fairness tools, organizations can build more ethical models and reduce bias in automated decisions.
#AI #Fairness #BiasDetection #MachineLearning #H2O
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: