A series of hyperbola is drawn having a common transverse axis of length \( 2 a \). Then the loc...
Автор: PW Solutions
Загружено: 2022-12-02
Просмотров: 10
Описание:
A series of hyperbola is drawn having a common transverse axis of length \( 2 a \). Then the locus of a point
\( \mathrm{P} \) \( P \) on each hyperbola, such that its distance from the
W transverse axis is equal to its distance from an asymptote, is
(a) \( \left(x^{2}-y^{2}\right)^{2}=4 x^{2}\left(x^{2}-a^{2}\right) \)
(b) \( \left(x^{2}-y^{2}\right)^{2}=x^{2}\left(x^{2}-a^{2}\right) \)
(c) \( \left(x^{2}-y^{2}\right)^{2}=4 y^{2}\left(x^{2}-a^{2}\right) \)
(d) \( \left(x^{2}-y^{2}\right)^{2}=y^{2}\left(x^{2}-a^{2}\right) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: