ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Taylor Series Error Bounds Explained 📉 | Maximum Approximation Error (Calculus II)

Автор: Math and Engineering Made Easy

Загружено: 2026-01-06

Просмотров: 17

Описание: Welcome back to Math and Engineering Made Easy!
In this session, we continue our discussion on Taylor series by focusing on one of the most important questions:

👉 How accurate is a Taylor approximation?

In this video, you’ll learn how to use the Taylor Remainder Theorem to determine the maximum possible error when approximating a function using a finite Taylor polynomial.

Topics covered include:

Quick recap of Taylor series approximation

What the remainder term represents

How to find an upper bound on the error

Choosing the correct value of z to maximize the remainder

Understanding why we use absolute value for error

Step-by-step examples including:

Approximating √4.2 using a Taylor polynomial centered at 4

Estimating ln(1.3) using a Taylor expansion around 1

Comparing the approximation with the true calculator value

Deciding how many terms are needed to achieve a desired accuracy (e.g., one millionth)

This lesson is essential for students in Calculus II, Engineering Mathematics, and anyone studying power series, numerical approximation, or error analysis.

If you have questions or want to see more examples, feel free to leave a comment — I’ll be happy to help.

#TaylorSeries #ErrorBounds #Calculus2 #RemainderTheorem #MathMadeEasy #EngineeringMadeEasy #SeriesApproximation #NumericalMethods #STEMEducation #LearnCalculus

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Taylor Series Error Bounds Explained 📉 | Maximum Approximation Error (Calculus II)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Taylor Series Approximation Explained 📐 | Estimating sin(x), eˣ & More (Calculus II)

Taylor Series Approximation Explained 📐 | Estimating sin(x), eˣ & More (Calculus II)

Gauss Divergence Theorem Explained | Surface to Volume Integral Conversion

Gauss Divergence Theorem Explained | Surface to Volume Integral Conversion

DFA Example 3 | Construct DFA of all possible strings ending with ‘a’| TOC | How to construct DFA|

DFA Example 3 | Construct DFA of all possible strings ending with ‘a’| TOC | How to construct DFA|

Power Series Convergence (Non-Trivial Cases) 📊 | Finding the Interval Step-by-Step

Power Series Convergence (Non-Trivial Cases) 📊 | Finding the Interval Step-by-Step

3D Stress Analysis with Mohr’s Circle 📐 | Where Does Maximum Shear Really Occur?

3D Stress Analysis with Mohr’s Circle 📐 | Where Does Maximum Shear Really Occur?

Lin Shidong vs Dimitrij Ovtcharov | MS R16 | WTT Star Contender Doha 2026

Lin Shidong vs Dimitrij Ovtcharov | MS R16 | WTT Star Contender Doha 2026

Power Series Convergence Explained 📐 | Radius & Interval of Convergence (Easy Cases)

Power Series Convergence Explained 📐 | Radius & Interval of Convergence (Easy Cases)

Integration by Parts | Tabular Method, Natural Log, Exponentials & Trig Examples Explained

Integration by Parts | Tabular Method, Natural Log, Exponentials & Trig Examples Explained

How to Compute Surface Integrals in Vector Fields | Flux Integrals, Parametric Surfaces & Examples

How to Compute Surface Integrals in Vector Fields | Flux Integrals, Parametric Surfaces & Examples

Ying Han vs Chen Yi | WS R16 | WTT Champions Doha 2026

Ying Han vs Chen Yi | WS R16 | WTT Champions Doha 2026

ZIEMKIEWICZ bez litości o Tusku i Żurku: To jest totalna groteska! | Podsumowanie Tygodnia

ZIEMKIEWICZ bez litości o Tusku i Żurku: To jest totalna groteska! | Podsumowanie Tygodnia

Shear Force and Bending Moment Diagrams | Engineering Statics

Shear Force and Bending Moment Diagrams | Engineering Statics

Cała prawda o Danii! Miśko: To co robili na Grenlandii było straszne!

Cała prawda o Danii! Miśko: To co robili na Grenlandii było straszne!

Power Series Made Easy 🔥 | Understanding 1/(1–x), Geometric Tricks, and Convergence!

Power Series Made Easy 🔥 | Understanding 1/(1–x), Geometric Tricks, and Convergence!

Surface Integrals in Scalar Fields Explained | Multivariable Calculus & Vector Calculus Tutorial

Surface Integrals in Scalar Fields Explained | Multivariable Calculus & Vector Calculus Tutorial

Zbrojenia Bez Hamulców: Pół Miliona Żołnierzy, Rekord Wydatków i „Bilet do Wojska” dla tysięcy

Zbrojenia Bez Hamulców: Pół Miliona Żołnierzy, Rekord Wydatków i „Bilet do Wojska” dla tysięcy

Najlepszy i Najgorszy Film Każdego Studia Animacji

Najlepszy i Najgorszy Film Każdego Studia Animacji

Felix Lebrun vs Tomokazu Harimoto | MS QF | WTT Champions Doha 2026

Felix Lebrun vs Tomokazu Harimoto | MS QF | WTT Champions Doha 2026

Stokes’ Theorem Made Simple! Converting Line Integrals to Surface Integrals

Stokes’ Theorem Made Simple! Converting Line Integrals to Surface Integrals

ŻOŁNIERZE NAZIŚCI. SKANDAL W NIEMIECKIEJ ARMII

ŻOŁNIERZE NAZIŚCI. SKANDAL W NIEMIECKIEJ ARMII

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]