ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

This AI Method Finds the Best Treatment Group (No Heuristics Needed)

AI in healthcare

CART

average treatment effect

causal ML

causal discovery

causal inference

data partition

decision tree

honest estimation

machine learning

research breakthrough

structural causal model

subgroup analysis

supervised learning

treatment effect

Автор: CollapsedLatents

Загружено: 2025-12-01

Просмотров: 1

Описание: 🚀 *Want to find the *one group of patients that benefits MOST from a new treatment?** Most methods rely on shaky, rule-based heuristics that fail under real-world data challenges. But what if the answer isn’t more complexity — but *less*?

In this breakthrough research, we prove that under a structural causal model, the optimal treatment subgroup has *homogeneous treatment effects* — meaning everyone in it responds the same way. That’s not a guess — it’s mathematically guaranteed.

So instead of inventing custom causal rules, we turn to **standard supervised learning**: train a simple CART decision tree to predict outcomes, then scan the leaves for the one with the highest *honest*, out-of-sample treatment effect.

💡 No complex heuristics. No fragile assumptions. Just clean, theory-backed machine learning.

We tested this on synthetic and semi-synthetic datasets — and it *outperformed state-of-the-art methods* like Causal Trees, Interaction Trees, and rule-based approaches in accuracy and subgroup recovery.

Why? Because we avoid high-variance early estimates and let the model learn the data’s natural structure first — then estimate effects safely.

🔑 **Key takeaway**: You don’t need fancy causal rules to find the maximum-effect subgroup. Sometimes, the best causal method is just **good supervised learning — grounded in solid theory**.

Perfect for researchers, data scientists, and clinicians working in personalized medicine, AI-driven healthcare, and causal inference.
👉 *Like, subscribe, and comment “SUBGROUP” if you’re ready to rethink how we find who benefits most from treatment!*
#CausalInference #MachineLearning #AIinHealthcare #PersonalizedMedicine #SupervisedLearning #CausalAI #TreatmentEffect #DataScience #ResearchBreakthrough #Shorts
Read more on arxiv by searching for this paper: 2511.20189v1.pdf

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
This AI Method Finds the Best Treatment Group (No Heuristics Needed)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]