ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

ImageNet Moment for Reinforcement Learning?

Автор: Machine Learning Street Talk

Загружено: 2025-02-18

Просмотров: 24712

Описание: Prof. Jakob Foerster, a leading AI researcher at Oxford University and Meta, and Chris Lu, a researcher at OpenAI -- they explain how AI is moving beyond just mimicking human behaviour to creating truly intelligent agents that can learn and solve problems on their own. Foerster champions open-source AI for responsible, decentralised development. He addresses AI scaling, goal misalignment (Goodhart's Law), and the need for holistic alignment, offering a quick look at the future of AI and how to guide it.

SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!
https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/
***

TRANSCRIPT/REFS:
https://www.dropbox.com/scl/fi/yqjszh...

Prof. Jakob Foerster
https://x.com/j_foerst
https://www.jakobfoerster.com/
University of Oxford Profile:
https://eng.ox.ac.uk/people/jakob-foe...

Chris Lu:
https://chrislu.page/

TOC
1. GPU Acceleration and Training Infrastructure
[00:00:00] 1.1 ARC Challenge Criticism and FLAIR Lab Overview
[00:01:25] 1.2 GPU Acceleration and Hardware Lottery in RL
[00:05:50] 1.3 Data Wall Challenges and Simulation-Based Solutions
[00:08:40] 1.4 JAX Implementation and Technical Acceleration

2. Learning Frameworks and Policy Optimization
[00:14:18] 2.1 Evolution of RL Algorithms and Mirror Learning Framework
[00:15:25] 2.2 Meta-Learning and Policy Optimization Algorithms
[00:21:47] 2.3 Language Models and Benchmark Challenges
[00:28:15] 2.4 Creativity and Meta-Learning in AI Systems

3. Multi-Agent Systems and Decentralization
[00:31:24] 3.1 Multi-Agent Systems and Emergent Intelligence
[00:38:35] 3.2 Swarm Intelligence vs Monolithic AGI Systems
[00:42:44] 3.3 Democratic Control and Decentralization of AI Development
[00:46:14] 3.4 Open Source AI and Alignment Challenges
[00:49:31] 3.5 Collaborative Models for AI Development

REFS
[[00:00:05] ARC Benchmark, Chollet
https://github.com/fchollet/ARC-AGI

[00:03:05] DRL Doesn't Work, Irpan
https://www.alexirpan.com/2018/02/14/...

[00:05:55] AI Training Data, Data Provenance Initiative
https://www.nytimes.com/2024/07/19/te...

[00:06:10] JaxMARL, Foerster et al.
https://arxiv.org/html/2311.10090v5

[00:08:50] M-FOS, Lu et al.
https://arxiv.org/abs/2205.01447

[00:09:45] JAX Library, Google Research
https://github.com/jax-ml/jax

[00:12:10] Kinetix, Mike and Michael
https://arxiv.org/abs/2410.23208

[00:12:45] Genie 2, DeepMind
https://deepmind.google/discover/blog...

[00:14:42] Mirror Learning, Grudzien, Kuba et al.
https://arxiv.org/abs/2208.01682

[00:16:30] Discovered Policy Optimisation, Lu et al.
https://arxiv.org/abs/2210.05639

[00:24:10] Goodhart's Law, Goodhart
https://en.wikipedia.org/wiki/Goodhar...

[00:25:15] LLM ARChitect, Franzen et al.
https://github.com/da-fr/arc-prize-20...

[00:28:55] AlphaGo, Silver et al.
https://arxiv.org/pdf/1712.01815.pdf

[00:30:10] Meta-learning, Lu, Towers, Foerster
https://direct.mit.edu/isal/proceedin...

[00:31:30] Emergence of Pragmatics, Yuan et al.
https://arxiv.org/abs/2001.07752

[00:34:30] AI Safety, Amodei et al.
https://arxiv.org/abs/1606.06565

[00:35:45] Intentional Stance, Dennett
https://plato.stanford.edu/entries/et...

[00:39:25] Multi-Agent RL, Zhou et al.
https://arxiv.org/pdf/2305.10091

[00:41:00] Open Source Generative AI, Foerster et al.
https://arxiv.org/abs/2405.08597

[00:43:25] Manhattan Project, Wellerstein
https://ethos.lps.library.cmu.edu/art...

[00:49:35] Llama 3, Meta AI
https://ai.meta.com/blog/meta-llama-3/

[00:49:50] CERN Collaboration, Castelvecchi
https://www.nature.com/articles/natur...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
ImageNet Moment for Reinforcement Learning?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Three Red Lines We're About to Cross Toward AGI

Three Red Lines We're About to Cross Toward AGI

It's Not About Scale, It's About Abstraction

It's Not About Scale, It's About Abstraction

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

How DeepSeek Rewrote the Transformer [MLA]

How DeepSeek Rewrote the Transformer [MLA]

«Будем жить!» | Хитрая передача на Первом канале о вернувшихся с СВО (English subtitles) @Max_Katz

«Будем жить!» | Хитрая передача на Первом канале о вернувшихся с СВО (English subtitles) @Max_Katz

ОГРОМНАЯ ИЗБА! ПОПАЛ ПОД ПРОЛИВНОЙ ДОЖДЬ. ИДУ ЗА ЩУКОЙ.

ОГРОМНАЯ ИЗБА! ПОПАЛ ПОД ПРОЛИВНОЙ ДОЖДЬ. ИДУ ЗА ЩУКОЙ.

"We need AIs with PHYSICAL experience" (Jeff Beck)

Why Physical AI Needs Bodies, Not Bigger Models

Why Physical AI Needs Bodies, Not Bigger Models

The Dark Matter of AI [Mechanistic Interpretability]

The Dark Matter of AI [Mechanistic Interpretability]

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]