ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Power BI Interview 2025: Real-Time Analytics & Streaming Data — Kafka, Event Hubs, IoT 🚀

Power BI

Real Time Analytics

Power BI Streaming

Power BI Kafka

Azure Event Hubs Power BI

IoT Hub Power BI

Push Dataset

DirectQuery

Streaming Dashboards

Power BI Interview

Автор: CodeVisium

Загружено: 2025-10-03

Просмотров: 129

Описание: Q1: How does Power BI support real-time dashboards and what are the main approaches?
Power BI enables real-time analytics through:

Push datasets (data pushed via REST API)

Streaming datasets (live streams, no history)

DirectQuery on real-time sources (like Azure SQL, Kafka connectors)
Example: A stock price dashboard updates every second via a push dataset.

Q2: How can you stream data into Power BI using Azure Event Hubs or IoT Hub?
Event Hubs or IoT Hub ingests high-volume events → stream processing (with Azure Stream Analytics) → output to Power BI dataset.
Example query in Azure Stream Analytics:

SELECT DeviceId, AVG(Temperature) AS AvgTemp, System.Timestamp AS EventTime
INTO PowerBI
FROM IoTInput TIMESTAMP BY EventEnqueuedTime
GROUP BY DeviceId, TumblingWindow(second, 10)


This streams 10-second average temperature readings to Power BI.

Q3: What role does Kafka play in integrating real-time data with Power BI?
Kafka handles distributed event streaming. Integration flow: Kafka → Kafka Connect → Azure Event Hubs or Spark Structured Streaming → Power BI push dataset.
Example: Retail transactions streaming into Kafka are aggregated by Spark and pushed to Power BI in near real-time.

Q4: How do you design a dataset for push streaming vs. DirectQuery for real-time use cases?

Push/Streaming dataset: Used for dashboards with live updates (e.g., call center queue). Data is pushed via REST API, not stored long-term.

DirectQuery: Used when querying real-time sources (like Azure SQL, Kusto/ADX). Supports historical + current data, but slower refresh than push.

Q5: What are the limitations and best practices of real-time streaming in Power BI?

Streaming datasets don’t support complex DAX or historical storage.

Push datasets can handle up to ~1M rows per hour, then overwrite.

Best practices: aggregate before pushing, limit visuals per dashboard, use hybrid approaches (DirectQuery + push).
Example: Use push dataset for a “Live KPI” tile while using DirectQuery for detailed drilldowns.

#PowerBI #RealTimeAnalytics #StreamingData #Kafka #AzureEventHubs #IoT #DataEngineering #StreamingDashboards

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Power BI Interview 2025: Real-Time Analytics & Streaming Data — Kafka, Event Hubs, IoT 🚀

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]