LangChain | Document Loader | PyPDFLoader: Extracting PDF Data for RAG | Video #25
Автор: Vikas Munjal Ellarr
Загружено: 2026-01-29
Просмотров: 10
Описание:
Welcome back! 📄 In Video #25 of our LangChain Full Course, we dive into the most popular way to feed data into a RAG pipeline: the PyPDFLoader.
Most corporate and academic data is trapped in PDF format. As part of our Document Loader module, I will show you how to use the PyPDFLoader to extract text from multi-page documents. Unlike the simple TextLoader, this tool automatically handles page-level splitting and tracks page numbers in the metadata—which is essential for building AI chatbots that can cite their sources!
✅ In this practical tutorial, we cover:
Installation: Setting up the pypdf library required for LangChain to read PDF files.
The PyPDFLoader Class: How it inherits from the base Document Loader.
Automatic Page Splitting: Why PyPDFLoader creates a separate Document object for every page.
Advanced Metadata: How to access the page number and source automatically stored in the document object.
Coding Demo: Loading a complex PDF and inspecting the list of documents generated.
Why this matters: If you want to build a "Chat with your PDF" application, this is the most important loader to master. It transforms static documents into a structured format that your LLM can search and analyze.
#LangChain #DocumentLoader #PyPDFLoader #RAG #PDFParsing #PythonAI #GenerativeAI #OpenAI #LLM #AITutorial #Coding #DataExtraction #LearnToCode #AIEngineering
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: