ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Understanding np.nditer with 2D Numpy Arrays: A Deep Dive into Fibonacci Calculation

Why do I find different numbers than expected when I use np.nditer with a 2D Numpy array?

numpy

python

Автор: vlogize

Загружено: 2025-02-23

Просмотров: 4

Описание: Discover the reason behind unexpected results when using `np.nditer` with 2D Numpy arrays, and learn the correct method for calculating Fibonacci numbers using matrix exponentiation.
---
This video is based on the question https://stackoverflow.com/q/77712774/ asked by the user 'Hafid Traikzi' ( https://stackoverflow.com/u/4956477/ ) and on the answer https://stackoverflow.com/a/77712785/ provided by the user 'Ankit Singh' ( https://stackoverflow.com/u/14605996/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, comments, revision history etc. For example, the original title of the Question was: Why do I find different numbers than expected when I use np.nditer with a 2D Numpy array?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding np.nditer with 2D Numpy Arrays

When working with Numpy in Python, developers often face challenges due to the complexities of array manipulations. A common issue arises when trying to iterate through a 2D Numpy array, such as when performing calculations for the Fibonacci sequence using matrix exponentiation. In this post, we will uncover the reasons behind unexpected outputs when using np.nditer and provide a clear solution to effectively calculate Fibonacci numbers using Numpy.

The Problem

In the provided scenario, the user attempts to execute a Fibonacci calculation with a single line of code, employing a 2D matrix to derive values from the Fibonacci sequence. Here’s the user's code snippet that illustrates the problem:

[[See Video to Reveal this Text or Code Snippet]]

Despite the intention to access matrix elements, the results obtained are not as expected. The root cause lies in the misuse of Numpy’s functionality and confusion regarding matrix operations needed for Fibonacci computation.

The Solution

To accurately compute Fibonacci numbers using matrix exponentiation, we need to make a few key changes to the existing code. Here’s a breakdown of those modifications:

1. Replace np.dot with np.linalg.matrix_power

The first step is to understand that np.dot is designed for standard matrix multiplication. However, in this case, we require matrix exponentiation. The correct function for this is np.linalg.matrix_power, which raises the matrix to the specified power.

2. Eliminate Unnecessary Conditions

The original conditional statement n==1j*1j serves no purpose in the Fibonacci calculation and can be removed to simplify the function.

By implementing these changes, the corrected code looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Correct Code

The matrix [[1, 1], [1, 0]] is significant because it allows us to compute Fibonacci numbers via matrix exponentiation.

By raising the matrix to the power of n using np.linalg.matrix_power, we retrieve the Fibonacci number directly from the position [0, 1] of the resulting matrix, which corresponds to F(n).

Conclusion

Through this explanation, we’ve distinguished the importance of choosing the correct Numpy functions and understanding matrix operations while attempting to calculate Fibonacci numbers using a 2D array. This knowledge not only fixes the immediate problem but also enhances your coding practices for future applications.

So next time you are faced with confusion surrounding the usage of np.nditer or Numpy arrays in general, remember to carefully analyze the functions available and ensure they suit your computational needs.

Wishing you a Merry Christmas and happy coding adventures with Numpy!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Understanding np.nditer with 2D Numpy Arrays: A Deep Dive into Fibonacci Calculation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Solving the Fibonacci Sequence with Matrix Exponentiation

Solving the Fibonacci Sequence with Matrix Exponentiation

Solving 100 Python NumPy Problems! (From easy to difficult)

Solving 100 Python NumPy Problems! (From easy to difficult)

Fibonacci Series In Java With Recursion - Full Tutorial (FAST Algorithm)

Fibonacci Series In Java With Recursion - Full Tutorial (FAST Algorithm)

numpy tutorial: iterate numpy array using nditer | numpy nditer

numpy tutorial: iterate numpy array using nditer | numpy nditer

Твоя ПЕРВАЯ НЕЙРОСЕТЬ на Python с нуля! | За 10 минут :3

Твоя ПЕРВАЯ НЕЙРОСЕТЬ на Python с нуля! | За 10 минут :3

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Matrix Exponentiation + Fibonacci in log(N)

Matrix Exponentiation + Fibonacci in log(N)

Где начало СХЕМЫ? Понимаем, читаем, изучаем схемы. Понятное объяснение!

Где начало СХЕМЫ? Понимаем, читаем, изучаем схемы. Понятное объяснение!

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Я СДЕЛАЛ ИДЕАЛЬНЫЙ ШАР ИЗ ОБЫЧНОЙ ЗЕМЛИ - ДРЕВНЯЯ ЯПОНСКАЯ ТЕХНИКА

Я СДЕЛАЛ ИДЕАЛЬНЫЙ ШАР ИЗ ОБЫЧНОЙ ЗЕМЛИ - ДРЕВНЯЯ ЯПОНСКАЯ ТЕХНИКА

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]