Fake News Detection Using LSTM | Project-Based Learning (UE23CS3505) | Deep Learning Project
Автор: Chandanaap749
Загружено: 2025-11-08
Просмотров: 6
Описание:
This video showcases our Project-Based Learning (PBL) work for the course UE23CS3505, where we developed a Fake News Detection System using LSTM (Long Short-Term Memory) — a powerful Deep Learning model capable of understanding text context and sequence.
Our system identifies whether a given news article is Real or Fake using Word2Vec embeddings for semantic meaning and LSTM for contextual learning.
✨ Project Highlights:
✅ Data preprocessing and text cleaning (using Python & NLP)
✅ Word2Vec for word embeddings
✅ LSTM model for sequential pattern learning
✅ Visualization of results (✅ Real / ❌ Fake)
✅ Practical demo with test news samples
🔍 Technologies Used:
Python | TensorFlow | Keras | Gensim | Word2Vec | NLP | LSTM | Pandas | Matplotlib
🎯 Objective:
To design an intelligent system that automatically detects fake or misleading news articles using natural language understanding.
🎓 Guide / Instructor:
Mrs. Nayana K
Assistant Professor
Department of CSE
GMU
📘 Course: Project-Based Learning (PBL) — UE23CS3505
#FakeNewsDetection #DeepLearning #LSTM #NLP #PythonProject #Word2Vec #AIProject #MachineLearning #PBL #UE23CS3505
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: