ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Marivi Fernandez Serra - Machine learning to improve the exchange and correlation functional in DFT

Автор: Institute for Pure & Applied Mathematics (IPAM)

Загружено: 2022-06-02

Просмотров: 1140

Описание: Recorded 26 May 2022. Marivi Fernandez-Serra of SUNY Stony Brook
Physics presents "Machine learning approaches to improve the exchange and correlation functional in density functional theory" at IPAM's Monte Carlo and Machine Learning Approaches in Quantum Mechanics Workshop.

Abstract: Finding the true exchange and correlation (XC) functional would render DFT exact. However, the true form of this elusive functional is so far unknown, and there is little hope that it can ever be written down in a closed-form expression. For practical applications, it has to be approximated. Many approximations, varying in complexity and accuracy, exist, and researchers have to decide on a case-by-case basis which functional to use. Doing so, however, is far from ideal, as the added degree of freedom can introduce hard-to-control systematic errors.
I will outline avenues for creating new XC functionals with the help of neural networks, a machine learning method. Neural networks are considered universal approximators, which means they can fit any function with arbitrary accuracy. For this reason, some people believe machine learning might hold the key to achieving something close to an exact functional.
We introduce the concept of physically informed machine learning and propose two approaches to fitting density functionals. In one approach, prior physical knowledge is injected into the training procedure by learning to add small corrections to physically motivated calculations. Our second approach demonstrates how physical information can be directly incorporated into the optimization algorithm in the form of differential equations. We show that both approaches lead to machine learning models that are significantly more data-efficient and reliable than those without physical priors. Trained automatically, the thus created models routinely outperform carefully hand-designed functionals. However, we also find that caution needs to be exercised when using machine-learned models, as they lack some of the safety-nets that traditional functionals are designed with and therefore run the risk of failing in unexpected scenarios.

Learn more online at: http://www.ipam.ucla.edu/programs/wor...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Marivi Fernandez Serra - Machine learning to improve the exchange and correlation functional in DFT

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Tadashi Tokieda - Magic with a ribbon, paperclips, rubber bands

Tadashi Tokieda - Magic with a ribbon, paperclips, rubber bands

2023 VWSCC: Session 03 — Density Functional Theory Overview

2023 VWSCC: Session 03 — Density Functional Theory Overview

Вся правда о Бетельгейзе: Когда ждать вспышку?

Вся правда о Бетельгейзе: Когда ждать вспышку?

Why Glass Is Weirder Than You Think” — Feynman on Transmission

Why Glass Is Weirder Than You Think” — Feynman on Transmission

Я сыграл с Магнусом Карлсеном

Я сыграл с Магнусом Карлсеном

Tapio Schneider - Hybrid Physics/AI Model of Turbulence, Convection, & Cloud Feedback in CliMA Model

Tapio Schneider - Hybrid Physics/AI Model of Turbulence, Convection, & Cloud Feedback in CliMA Model

James Simons - Origin of Chern-Simons

James Simons - Origin of Chern-Simons

Доктор Джун Ху — региональный лауреат премии Блаватника 2017 года в области физических наук и инж...

Доктор Джун Ху — региональный лауреат премии Блаватника 2017 года в области физических наук и инж...

Почему скорость света слишком медленная, чтобы добраться до других галактик | Документальный фильм

Почему скорость света слишком медленная, чтобы добраться до других галактик | Документальный фильм

Noah Brenowitz - Does progress in Earth System Modeling require more data, more compute, or both?

Noah Brenowitz - Does progress in Earth System Modeling require more data, more compute, or both?

Richard Feynman: Explains Why LIGHT does not move

Richard Feynman: Explains Why LIGHT does not move

Provost’s Lecture: Karl Friston on “I Am Therefore I Think”

Provost’s Lecture: Karl Friston on “I Am Therefore I Think”

Johan Mathé - Earth System Symmetries: Geometry, Groups, & Limits of Structure in Machine Learning

Johan Mathé - Earth System Symmetries: Geometry, Groups, & Limits of Structure in Machine Learning

Tadashi Tokieda - Chain reactions

Tadashi Tokieda - Chain reactions

Milan Curcic - Deterministic AI Agents for Downstream Tasks & Application to Hurricane Forecasting

Milan Curcic - Deterministic AI Agents for Downstream Tasks & Application to Hurricane Forecasting

General Relativity 6 | Dr. Jacobus Verbaarschot | Suborno Isaac | Stony Brook University

General Relativity 6 | Dr. Jacobus Verbaarschot | Suborno Isaac | Stony Brook University

Tutorial Introduction to DFT (Density Functional Theory)

Tutorial Introduction to DFT (Density Functional Theory)

We Just Saw a Black Hole Explode — It Changes Everything

We Just Saw a Black Hole Explode — It Changes Everything

The Connections Between Discrete Geometric Mechanics, Information Geometry and Machine Learning

The Connections Between Discrete Geometric Mechanics, Information Geometry and Machine Learning

Sir Michael Atiyah - From Algebraic Geometry to Physics - a Personal Perspective [2010]

Sir Michael Atiyah - From Algebraic Geometry to Physics - a Personal Perspective [2010]

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]