ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Grokking: When Neural Networks Suddenly "Get It" | Deep Learning Explained

Автор: AI Depth School

Загружено: 2025-12-18

Просмотров: 345

Описание: Have you ever trained a neural network that perfectly memorized your training data but completely failed on test data? Then, after training for thousands more epochs with NO improvement, it suddenly achieved near-perfect generalization?

Welcome to GROKKING - one of the most counterintuitive and fascinating phenomena in deep learning.

📊 WHAT YOU'LL LEARN:
What grokking is and why it happens
The three phases of grokking: comprehension, reorganization, consolidation
Phase transitions in learning (like water freezing into ice)
The spline reorganization perspective
Why models prefer simpler solutions at scale
The role of weight decay and regularization
Circuit formation and competition in neural networks
Practical training strategies to leverage grokking


🔑 KEY INSIGHTS:
1. Memorization happens fast, understanding takes time
2. Models can reorganize from complex to simple solutions
3. Both solutions fit training data - only simple ones generalize
4. Weight decay creates pressure toward simplicity
5. Training far past zero loss can unlock generalization
6. Grokking is most dramatic on algorithmic tasks

🎯 WHY THIS MATTERS:
Understanding grokking challenges conventional wisdom about overfitting and early stopping. It reveals that neural networks don't just learn data - they discover elegant representations over time. This has implications for:
Training schedules and patience
Regularization strategies
Model interpretability
Understanding generalization

📚 REFERENCES & FURTHER READING:
"Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets" (Power et al., 2022)
"Deep Learning's Phase Transitions" (Nakkiran et al., 2021)
"Omnigrok: Grokking Beyond Algorithmic Data" (Varma et al., 2023)
"The Slingshot Mechanism: An Empirical Study of Grokking" (Thilak et al., 2022)

🔗 RELATED VIDEOS:
Double Descent Phenomenon: [Link]
Neural Network Optimization Landscapes: [Link]
Understanding Weight Decay: [Link]
Phase Transitions in Machine Learning: [Link]

💬 DISCUSSION QUESTIONS:
Have you experienced grokking in your own models?
What tasks do you think are most likely to exhibit grokking?
Should we rethink early stopping strategies?

👨‍🏫 ABOUT THIS VIDEO:
This video features interactive visualizations showing real grokking dynamics, including animated curves, phase transition diagrams, and energy landscape visualizations. All graphics are custom-built to illustrate these complex concepts clearly

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Grokking: When Neural Networks Suddenly "Get It" | Deep Learning Explained

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Skorpion - polski samolot szturmowy ktory przerazil caly swiat i umarl na biurku!

Skorpion - polski samolot szturmowy ktory przerazil caly swiat i umarl na biurku!

Как начать создавать видео с использованием ИИ | Полное руководство по Higgsfield Kling3.0

Как начать создавать видео с использованием ИИ | Полное руководство по Higgsfield Kling3.0

AI Deep Dive 201: LLMs, RAG, AI Agents & Agentic AI Architecture

AI Deep Dive 201: LLMs, RAG, AI Agents & Agentic AI Architecture

Движение к цели короткими шагами

Движение к цели короткими шагами

Richard Feynman: Explains Why LIGHT does not move

Richard Feynman: Explains Why LIGHT does not move

AlphaGenome: DeepMind's AI That Reads 1 Million DNA Letters at Once

AlphaGenome: DeepMind's AI That Reads 1 Million DNA Letters at Once

The $285 Billion Crash Wall Street Won't Explain Honestly. Here's What Everyone Missed.

The $285 Billion Crash Wall Street Won't Explain Honestly. Here's What Everyone Missed.

Why Intelligent Life Is Unlikely | Leonard Susskind

Why Intelligent Life Is Unlikely | Leonard Susskind

The AI Wake-Up Call Everyone Needs Right Now!

The AI Wake-Up Call Everyone Needs Right Now!

Doda - Pamiętnik (Official Video)

Doda - Pamiętnik (Official Video)

DeepSeek-OCR 2 Breakthrough Explained: Visual Causal Flow - How AI Reads Documents Like Humans

DeepSeek-OCR 2 Breakthrough Explained: Visual Causal Flow - How AI Reads Documents Like Humans

Почему глубина не всегда лучше

Почему глубина не всегда лучше

KV Cache in LLM Inference - Complete Technical Deep Dive

KV Cache in LLM Inference - Complete Technical Deep Dive

DeepSeekMath: Успешное прохождение теста

DeepSeekMath: Успешное прохождение теста

Brett Adcock: Humanoids Run on Neural Net, Autonomous Manufacturing, and $50 Trillion Market #229

Brett Adcock: Humanoids Run on Neural Net, Autonomous Manufacturing, and $50 Trillion Market #229

Give Me 20 Minutes — I’ll Teach You the Most Important LangChain Code (with Clear Explanations)

Give Me 20 Minutes — I’ll Teach You the Most Important LangChain Code (with Clear Explanations)

Робототехническая революция стала реальностью: почему Boston Dynamics и Figure вот-вот изменят всё.

Робототехническая революция стала реальностью: почему Boston Dynamics и Figure вот-вот изменят всё.

Nuclear Fuel: The 4 Chokepoint TRAPs West in Russia's Nuclear Fuel Crisis (100% HALEU Monopoly)

Nuclear Fuel: The 4 Chokepoint TRAPs West in Russia's Nuclear Fuel Crisis (100% HALEU Monopoly)

Foundation-Sec-8B-Reasoning: First Open-Source AI Model for Cybersecurity Reasoning

Foundation-Sec-8B-Reasoning: First Open-Source AI Model for Cybersecurity Reasoning

Introducing Agentic Vision in Gemini 3 Flash | AI That Actually SEES(OBSERVES/ACTS/REASONS) Images

Introducing Agentic Vision in Gemini 3 Flash | AI That Actually SEES(OBSERVES/ACTS/REASONS) Images

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]