ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

The AI Frontier: from Gemini 3 Deep Think distilling to Flash — Jeff Dean

Автор: Latent Space

Загружено: 2026-02-12

Просмотров: 32866

Описание: From rewriting Google’s search stack in the early 2000s to reviving sparse trillion-parameter models and co-designing TPUs with frontier ML research, Jeff Dean has quietly shaped nearly every layer of the modern AI stack. As Chief AI Scientist at Google and a driving force behind Gemini, Jeff has lived through multiple scaling revolutions from CPUs and sharded indices to multimodal models that reason across text, video, and code.

Jeff joins us to unpack what it really means to “own the Pareto frontier,” why distillation is the engine behind every Flash model breakthrough, how energy (in picojoules) not FLOPs is becoming the true bottleneck, what it was like leading the charge to unify all of Google’s AI teams, and why the next leap won’t come from bigger context windows alone, but from systems that give the illusion of attending to trillions of tokens.

We discuss:
• Jeff’s early neural net thesis in 1990: parallel training before it was cool, why he believed scaling would win decades early, and the “bigger model, more data, better results” mantra that held for 15 years
• The evolution of Google Search: sharding, moving the entire index into memory in 2001, softening query semantics pre-LLMs, and why retrieval pipelines already resemble modern LLM systems
• Pareto frontier strategy: why you need both frontier “Pro” models and low-latency “Flash” models, and how distillation lets smaller models surpass prior generations
• Distillation deep dive: ensembles → compression → logits as soft supervision, and why you need the biggest model to make the smallest one good
• Latency as a first-class objective: why 10–50x lower latency changes UX entirely, and how future reasoning workloads will demand 10,000 tokens/sec
• Energy-based thinking: picojoules per bit, why moving data costs 1000x more than a multiply, batching through the lens of energy, and speculative decoding as amortization
• TPU co-design: predicting ML workloads 2–6 years out, speculative hardware features, precision reduction, sparsity, and the constant feedback loop between model architecture and silicon
• Sparse models and “outrageously large” networks: trillions of parameters with 1–5% activation, and why sparsity was always the right abstraction
• Unified vs. specialized models: abandoning symbolic systems, why general multimodal models tend to dominate vertical silos, and when vertical fine-tuning still makes sense
• Long context and the illusion of scale: beyond needle-in-a-haystack benchmarks toward systems that narrow trillions of tokens to 117 relevant documents
• Personalized AI: attending to your emails, photos, and documents (with permission), and why retrieval + reasoning will unlock deeply personal assistants
• Coding agents: 50 AI interns, crisp specifications as a new core skill, and how ultra-low latency will reshape human–agent collaboration
• Why ideas still matter: transformers, sparsity, RL, hardware, systems — scaling wasn’t blind; the pieces had to multiply together

Substack Article w/Show Notes: https://www.latent.space/p/jeffdean

—

Jeff Dean
• LinkedIn:   / jeff-dean-8b212555  
• X: https://x.com/jeffdean

Google
• https://google.com
• https://deepmind.google

00:00:00 Intro
00:01:31 Frontier vs Flash & Distillation Strategy
00:05:09 Distillation, RL & Flash Economic Advantage
00:07:35 Flash in Products + Importance of Latency
00:11:11 Benchmarks, Long Context & Real Use Cases
00:15:01 Attending to Trillions of Tokens & Multimodality
00:20:11 LLM Search & Google Search Evolution
00:24:09 Systems Design Principles + Latency Numbers
00:32:09 Energy, Batching & TPU Co-Design
00:42:21 Research Frontiers: Reliability & RL Challenges
00:46:27 Unified Models vs Symbolic Systems (IMO)
00:50:38 Knowledge vs Reasoning + Vertical/Modular Models
00:55:58 Multilingual + Low-Resource Language Insights
00:57:58 Vision-Language Representations Example
01:07:15 Gemini Origin Story + Organizational Memo
01:09:27 Coding with AI & Agent Interaction Style
01:14:26 Prompting Skills & Spec Design
01:19:54 Latency Predictions & Tokens/sec Vision
01:21:29 Future Predictions: Personal Models & Hardware
01:23:11 Closing

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
The AI Frontier: from Gemini 3 Deep Think distilling to Flash — Jeff Dean

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Дарио Амодеи — «Мы близки к концу экспоненты»

Дарио Амодеи — «Мы близки к концу экспоненты»

Ben Horowitz: xAI Executive Exodus, Apple's AI Crisis, The Pace of AI | EP #232

Ben Horowitz: xAI Executive Exodus, Apple's AI Crisis, The Pace of AI | EP #232

Why the Past Still Exists | Leonard Susskind

Why the Past Still Exists | Leonard Susskind

Feynman: Why The Universe Obeys

Feynman: Why The Universe Obeys "Invented" Math

Head of Claude Code: What happens after coding is solved | Boris Cherny

Head of Claude Code: What happens after coding is solved | Boris Cherny

Gemini 3.1 Pro Is HERE – Hands-On With Google’s Newest Model!

Gemini 3.1 Pro Is HERE – Hands-On With Google’s Newest Model!

LLMs Don't Need More Parameters. They Need Loops.

LLMs Don't Need More Parameters. They Need Loops.

КОЛМАНОВСКИЙ:

КОЛМАНОВСКИЙ: "Это просто чудо". Где "проваливается" ИИ, что не так с ядом из кожи лягушки, азарт

Главное ИИ-интервью 2026 года в Давосе: Anthropic и DeepMind на одной сцене

Главное ИИ-интервью 2026 года в Давосе: Anthropic и DeepMind на одной сцене

Introducing Gemini 3.1 Pro

Introducing Gemini 3.1 Pro

Richard Sutton - The future of AI - IPAM at UCLA

Richard Sutton - The future of AI - IPAM at UCLA

Ep 18: Petaflops to the People — with George Hotz of tinycorp

Ep 18: Petaflops to the People — with George Hotz of tinycorp

The Thinking Game | Full documentary | Tribeca Film Festival official selection

The Thinking Game | Full documentary | Tribeca Film Festival official selection

Лучший документальный фильм про создание ИИ

Лучший документальный фильм про создание ИИ

Способ увидеть невидимое: как создают суперлинзы из оптических метаматериалов

Способ увидеть невидимое: как создают суперлинзы из оптических метаматериалов

How to be a CEO when AI breaks all the old playbooks | Sequoia CEO Coach Brian Halligan

How to be a CEO when AI breaks all the old playbooks | Sequoia CEO Coach Brian Halligan

How Google DeepMind Operates & Experiments — With Lila Ibrahim and James Manyika

How Google DeepMind Operates & Experiments — With Lila Ibrahim and James Manyika

Why the Biggest AI Career Opportunity Just Appeared—and Almost Nobody Sees It.

Why the Biggest AI Career Opportunity Just Appeared—and Almost Nobody Sees It.

ШНОЛЬ - биофизик ДОКАЗАЛ, что СЛУЧАЙНОСТИ НЕ СУЩЕСТВУЕТ: Коллеги обвинили в МИСТИКЕ

ШНОЛЬ - биофизик ДОКАЗАЛ, что СЛУЧАЙНОСТИ НЕ СУЩЕСТВУЕТ: Коллеги обвинили в МИСТИКЕ

Inside Google DeepMind: AGI, Robotics, & World Models Explained - Demis Hassabis

Inside Google DeepMind: AGI, Robotics, & World Models Explained - Demis Hassabis

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]