ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

This System Looks Simple…But Many Students Miss the Trick | MOA Lesson 16

Автор: Math Olympiad Academy

Загружено: 2025-12-29

Просмотров: 343

Описание: Hello math fans!

🎓 Welcome to Math Olympiad Academy (MOA) - your trusted space for advanced mathematical reasoning, structured problem-solving, and international-level enrichment.

In Lesson 16, advanced high-school students tackle a nonlinear system of reciprocal equations - a problem that looks intimidating at first, but can be resolved systematically using a substitution approach, algebraic manipulation, and logical reasoning.

The lesson objective is to find all real numbers x and y that satisfy:

one over x plus one over y equals five,
and one over x squared plus one over y squared equals seventeen.

Your challenge as students is clear:

👉 Can you determine all real solutions (x, y) that satisfy this system?

Instead of solving the problem using the two variables x and y, which would yield a tedious and long calculation, we adopted the substitution approach (or method).

In this lesson, we guide students through a clear and systematic method:

🟢 Apply a change of variables to simplify the nonlinear system
🟢 Rewrite the system in terms of u and v
🟢 Use algebraic identities to calculate u minus v and factor expressions
🟢 Solve the resulting linear systems step by step
🟢 Translate solutions back to the original variables x and y
🟢 Verify all solutions numerically to confirm correctness

This lesson is suitable for students aiming to strengthen:

Solving nonlinear and reciprocal systems of equations
Applying substitutions and algebraic identities effectively
Logical reasoning and step-by-step problem-solving
Analytical verification of solutions
Preparation for high-level math competitions including AMC, AIME, JEE Advanced, and national Olympiads
Structured approaches used in elite mathematical training worldwide

By the end of this video, advanced high-school students will:

Confidently solve nonlinear reciprocal systems of equations
Apply change of variables and algebraic identities strategically
Verify solutions both algebraically and numerically
Enhance logical reasoning, analytical thinking, and problem-solving skills
Strengthen structured reasoning and advanced algebraic problem-solving abilities.

📌 Subscribe to Math Olympiad Academy for more lessons covering:

🟢 Advanced algebra and nonlinear systems
🟢 University-style and international math challenges
🟢 Step-by-step analytical reasoning
🟢 Techniques essential for competitive mathematics

Your likes, comments, and subscriptions motivate us to continue producing high-quality academic content for learners around the world.

The Math Olympiad Academy Team

Tags:
#AdvancedAlgebraProblemSolving #HighSchoolMathProblems #MathProblemSolved #NonlinearEquations #SystemOfEquationsSolved #ReciprocalEquations #MathOlympiad #ProblemSolving #AlgebraChallenge #LearnAlgebra #GlobalMath #LogicalReasoning #AmericanHighSchoolAlgebra #HighSchoolOlympiad #CanYouSolveThis #MathPuzzle #MOALesson16

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
This System Looks Simple…But Many Students Miss the Trick | MOA Lesson 16

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

JEE Advanced Algebra problems: Solve Radical Equations Step-by-Step | MOA Lesson 8

JEE Advanced Algebra problems: Solve Radical Equations Step-by-Step | MOA Lesson 8

Мурашки по коже! 🤯

Мурашки по коже! 🤯

Multiply Radicals (Product Property with Variables)

Multiply Radicals (Product Property with Variables)

Хитрости на собеседовании в Гарвардском университете | Как быстро решить уравнение a и b?

Хитрости на собеседовании в Гарвардском университете | Как быстро решить уравнение a и b?

a+b+c+d+e = abcde

a+b+c+d+e = abcde

Эта Хитрая Задача С Мехмата Завалила Сотни! Решишь?

Эта Хитрая Задача С Мехмата Завалила Сотни! Решишь?

Harvard-Level Limit Problem Solved Step by Step | Can You Determine This Limit? | MOA Lesson 17

Harvard-Level Limit Problem Solved Step by Step | Can You Determine This Limit? | MOA Lesson 17

Harvard-Level Algebra: Rigorous Solution to a Tricky Symmetric System | MOA Lesson 19

Harvard-Level Algebra: Rigorous Solution to a Tricky Symmetric System | MOA Lesson 19

Can You Solve This Math Problem That Tricks Students | Math Challenge | MOA Lesson 7

Can You Solve This Math Problem That Tricks Students | Math Challenge | MOA Lesson 7

3 to (x/2) = 12, many don’t know where to start

3 to (x/2) = 12, many don’t know where to start

AP Calculus BC: Integral with Repeated Linear Factors — Step-by-Step Solution | MOA Lesson 21

AP Calculus BC: Integral with Repeated Linear Factors — Step-by-Step Solution | MOA Lesson 21

JEE Advanced 2026–Level Integral: Evaluate √7·tan(2α√7/π) = ? | MOA Lesson 23

JEE Advanced 2026–Level Integral: Evaluate √7·tan(2α√7/π) = ? | MOA Lesson 23

Эти правила математики ни кто не отменял, они помогут подробнее понять решение примера!

Эти правила математики ни кто не отменял, они помогут подробнее понять решение примера!

Константа Капрекара

Константа Капрекара

Can YOU Solve This Math Olympiad Exponential Equation?  Skills & Tricks | MOA Lesson 4

Can YOU Solve This Math Olympiad Exponential Equation? Skills & Tricks | MOA Lesson 4

Harvard University Interview Tricks | m = ?

Harvard University Interview Tricks | m = ?

Как решить функциональное уравнение

Как решить функциональное уравнение

Хитрая советская задача. Школьники не могут решить

Хитрая советская задача. Школьники не могут решить

Румынская математическая олимпиада

Румынская математическая олимпиада

Harvard-Level Limit Problem Solved Step by Step | Can You Determine This Limit? | MOA Lesson 18

Harvard-Level Limit Problem Solved Step by Step | Can You Determine This Limit? | MOA Lesson 18

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]