ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Understanding Why subprocess.getoutput Adds a Non-Constant Overhead in Python

Автор: vlogize

Загружено: 2025-08-31

Просмотров: 0

Описание: Discover the reasons behind the variable overhead of `subprocess.getoutput` in Python with clear examples and explanations to enhance your programming skills.
---
This video is based on the question https://stackoverflow.com/q/64433807/ asked by the user 'T. Silver' ( https://stackoverflow.com/u/6026974/ ) and on the answer https://stackoverflow.com/a/64434131/ provided by the user 'T. Silver' ( https://stackoverflow.com/u/6026974/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Why does subprocess getoutput add a non-constant overhead?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Why subprocess.getoutput Adds a Non-Constant Overhead in Python

When working with Python, especially for executing system commands, one frequently encounters the subprocess module which allows you to spawn new processes and connect to their input/output/error pipes. However, users often see unexpected behavior when measuring the performance of functions like subprocess.getoutput. If you've noticed that the overhead seems to depend on the duration of the task being executed, you might be left wondering why that is.

The Problem Explained

Recently, a user conducted an experiment using Python 3.6.7 on macOS to time the execution with and without subprocess.getoutput. Their findings were shocking — the time overhead associated with subprocess.getoutput appeared to increase in proportion to the task's execution time. Here are some of their key test results:

The execution time for running a basic loop with getoutput was significantly higher than running the loop directly in Python.

As the number of iterations increased, so too did the overhead incurred by getoutput.

Example Observations

For instance, consider the following snippets:

Raw execution time for a simple loop:

[[See Video to Reveal this Text or Code Snippet]]

This took approximately 1.97 ms.

Execution time using subprocess.getoutput:

[[See Video to Reveal this Text or Code Snippet]]

This resulted in a staggering 42.1 ms.

As the iterations increased to 10 million and then 100 million, the subprocess.getoutput command performed even slower, showcasing the non-constant overhead.

Analyzing the Results

Upon further analysis, it becomes clear that this discrepancy arises from Python's execution environment when subprocess.getoutput is involved. Here’s the breakdown:

Function Local Variables Impact

When using %timeit, the execution environment could introduce extra overhead that isn't present when you simply run the command in the shell. Thus, the example indicated that:

Using the command line time instead of %timeit resulted in more consistent timing.

For instance:

[[See Video to Reveal this Text or Code Snippet]]

This shows that simple labeled commands run in the terminal could perform better than those invoked through Python's function calls.

Using time vs %timeit

The user noted that switching to the command line directly prevented the irregularities noted with %timeit. Here's a recap of that comparison:

Standard execution:

[[See Video to Reveal this Text or Code Snippet]]

This performance was noticeably close to executing Python code without subprocess, illustrating a more reliable measurement when not impacted by the intermediate calls.

Conclusion

To summarize, the increased time cost tied to subprocess.getoutput can be attributed to how Python handles task execution combined with design intricacies surrounding the environment it operates within. If you're looking for accurate performance insights with respect to subprocess calls, consider using shell commands directly or keep an eye on how local function variables may be contributing to your overhead.

By understanding these principles, you can optimize your subprocess usage for better performance and make informed decisions on how to structure your task executions in Python effectively.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Understanding Why subprocess.getoutput Adds a Non-Constant Overhead in Python

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Декораторы Python — наглядное объяснение

Декораторы Python — наглядное объяснение

Введение в кибербезопасность | Обучение кибербезопасности для начинающих | CyberSecurity | Simpli...

Введение в кибербезопасность | Обучение кибербезопасности для начинающих | CyberSecurity | Simpli...

Экспресс-курс RAG для начинающих

Экспресс-курс RAG для начинающих

Python  - Полный Курс по Python [15 ЧАСОВ]

Python - Полный Курс по Python [15 ЧАСОВ]

Убей скучный Excel: сделай ВЕБ-дашборд без кода с помощью ИИ (пошаговый гайд)

Убей скучный Excel: сделай ВЕБ-дашборд без кода с помощью ИИ (пошаговый гайд)

Акунин ошарашил прогнозом! Финал войны уже решён — Кремль скрывает правду

Акунин ошарашил прогнозом! Финал войны уже решён — Кремль скрывает правду

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Понимание GD&T

Понимание GD&T

Исследовательский анализ данных с помощью Pandas Python

Исследовательский анализ данных с помощью Pandas Python

Haskell, python и прочие приблуды. Прохожу машину HaskHell на TryHackMe, уровень средний!

Haskell, python и прочие приблуды. Прохожу машину HaskHell на TryHackMe, уровень средний!

Основы ПЛК: релейная логика

Основы ПЛК: релейная логика

Полная дорожная карта фронтенд-разработчика [2024]

Полная дорожная карта фронтенд-разработчика [2024]

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Учебник по Excel за 15 минут

Учебник по Excel за 15 минут

Объяснение сетевых портов

Объяснение сетевых портов

Маска подсети — пояснения

Маска подсети — пояснения

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

КАК НЕЛЬЗЯ ХРАНИТЬ ПАРОЛИ (и как нужно) за 11 минут

КАК НЕЛЬЗЯ ХРАНИТЬ ПАРОЛИ (и как нужно) за 11 минут

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]