Unified Clustering Engine: K-Means → Fuzzy → EM (Poisson & Gaussian)
Автор: Erik Van Releghem
Загружено: 2026-02-15
Просмотров: 129
Описание:
Clustering algorithms are often explained in isolation — K-Means here, Fuzzy C-Means there, EM somewhere else with Gaussian examples.
In this video we do something different: we show that, from a software engineering point of view, a surprisingly large family of clustering methods can be implemented inside the same algorithmic framework — the same table, the same machine, the same expectation / update loop.
We cover:
• Hard assignment → K-Means
• Soft/fuzzy assignment → Fuzzy C-Means
• Probabilistic assignment → Expectation-Maximization (EM)
Not in this framework: hierarchical clustering, DBSCAN
And: we do *not* restrict EM to Gaussians.
We first demonstrate EM on a real-world Poisson mixture in an *insurance context* , before moving to the more familiar (but not the only!) Gaussian case.
We also discuss suggestions for robustification (these are not unique nor all-powerful).
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: