ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

How we built our multi-agent research system

Автор: Xiaol.x

Загружено: 2025-06-25

Просмотров: 79

Описание: How we built our multi-agent research system

Claude now has Research capabilities that allow it to search across the web, Google Workspace, and any integrations to accomplish complex tasks.

The journey of this multi-agent system from prototype to production taught us critical lessons about system architecture, tool design, and prompt engineering. A multi-agent system consists of multiple agents (LLMs autonomously using tools in a loop) working together. Our Research feature involves an agent that plans a research process based on user queries, and then uses tools to create parallel agents that search for information simultaneously. Systems with multiple agents introduce new challenges in agent coordination, evaluation, and reliability.

This post breaks down the principles that worked for us—we hope you'll find them useful to apply when building your own multi-agent systems.

Benefits of a multi-agent system
Research work involves open-ended problems where it’s very difficult to predict the required steps in advance. You can’t hardcode a fixed path for exploring complex topics, as the process is inherently dynamic and path-dependent. When people conduct research, they tend to continuously update their approach based on discoveries, following leads that emerge during investigation.

This unpredictability makes AI agents particularly well-suited for research tasks. Research demands the flexibility to pivot or explore tangential connections as the investigation unfolds. The model must operate autonomously for many turns, making decisions about which directions to pursue based on intermediate findings. A linear, one-shot pipeline cannot handle these tasks.

The essence of search is compression: distilling insights from a vast corpus. Subagents facilitate compression by operating in parallel with their own context windows, exploring different aspects of the question simultaneously before condensing the most important tokens for the lead research agent. Each subagent also provides separation of concerns—distinct tools, prompts, and exploration trajectories—which reduces path dependency and enables thorough, independent investigations.

Once intelligence reaches a threshold, multi-agent systems become a vital way to scale performance. For instance, although individual humans have become more intelligent in the last 100,000 years, human societies have become exponentially more capable in the information age because of our collective intelligence and ability to coordinate. Even generally-intelligent agents face limits when operating as individuals; groups of agents can accomplish far more.

Our internal evaluations show that multi-agent research systems excel especially for breadth-first queries that involve pursuing multiple independent directions simultaneously. We found that a multi-agent system with Claude Opus 4 as the lead agent and Claude Sonnet 4 subagents outperformed single-agent Claude Opus 4 by 90.2% on our internal research eval. For example, when asked to identify all the board members of the companies in the Information Technology S&P 500, the multi-agent system found the correct answers by decomposing this into tasks for subagents, while the single agent system failed to find the answer with slow, sequential searches.

Multi-agent systems work mainly because they help spend enough tokens to solve the problem. In our analysis, three factors explained 95% of the performance variance in the BrowseComp evaluation (which tests the ability of browsing agents to locate hard-to-find information). We found that token usage by itself explains 80% of the variance, with the number of tool calls and the model choice as the two other explanatory factors. This finding validates our architecture that distributes work across agents with separate context windows to add more capacity for parallel reasoning. The latest Claude models act as large efficiency multipliers on token use, as upgrading to Claude Sonnet 4 is a larger performance gain than doubling the token budget on Claude Sonnet 3.7. Multi-agent architectures effectively scale token usage for tasks that exceed the limits of single agents.


https://www.anthropic.com/engineering...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How we built our multi-agent research system

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

How AI Could Save (Not Destroy) Education | Sal Khan | TED

How AI Could Save (Not Destroy) Education | Sal Khan | TED

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

Что полезного сделал ИИ? [Veritasium]

Что полезного сделал ИИ? [Veritasium]

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

The PETRICHOR Collection | 5 original pieces \\ Relaxing Piano [20min]

The PETRICHOR Collection | 5 original pieces \\ Relaxing Piano [20min]

Экономика в рецессии. Кризис коснется всех. Резервы закончились — Владислав ЖУКОВСКИЙ

Экономика в рецессии. Кризис коснется всех. Резервы закончились — Владислав ЖУКОВСКИЙ

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

ИИ-агенты — вот что действительно изменит разработку. Пишем ИИ-агент на Python, LangChain и GigaChat

ИИ-агенты — вот что действительно изменит разработку. Пишем ИИ-агент на Python, LangChain и GigaChat

What are AI Agents?

What are AI Agents?

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]