ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1

class9th maths ch 12

class 9 maths ch 12

theorem 12.1

12.1 theorem

9th class theorem 12.1

theorem12.1

12.1.1

ch 12

theorem 12.1.1

class 9 Maths theorem 12.1

Автор: Maths academy Siddiq Sadiq 2.0

Загружено: 2024-01-02

Просмотров: 177

Описание: #theorem #maths #class9maths #class
Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 1 Peshawar Model school Class: 9th |
Mathematics (FBISE) |
Lecture # |
Unit #12 |
Theorem #12.1.1 |
Mathematics Science group |
Any point on the right bisector of a line segment is equidistant from its end points |
Dear viewers, it is my pleasure to deliver you mathematics tutorials in simple and native language so that you can get it easily |
#MathsMadeEasy is a channel where you can improve your #Mathematics |
This is an education channel where maths made easy will try to solve your problems |
Students may send the problems they are facing through comments |
Introduction
In this unit, we will prove theorems and their converses, if
any, about right bisector of a line segment and bisector of an angle.
But before that it will be useful to recall the following definitions:
Right Bisector of a Line Segment
A line is called a right bisector of a line segment if it is perpendicular
to the line segment and passes through its midpoint.
Bisector of an Angle
A ray BP is called the bisector of ∠ABC, if P is a point in the
interior of the angle and m∠ABP = m∠PBC.
Theorem 12.1.1
Any point on the right bisector of a line
segment is equidistant from its end points.
Given
A line LM intersects the line segment AB at
the point C. Such that LM is perpendicular to AB and AC ≅ BC. P is a point on LM.
To Prove
PA ≅ PB
Construction
Join P to the points A and B.
Proof:
In ∆ACP ←→ ∆BCP
AC ≅ BC (given)
∠ACP ≅ ∠BCP (given PC is perpendicular to AB, so that each ∠ at
C = 90^0)

PC ≅ PC (Common
∆ACP ≅ ∆BCP (S.A.S. postulate)
Hence PA ≅ PB (corresponding sides of congruent triangles)
In this unit we stated and will proved the following theorems:
• Any point on the right bisector of a line segment is equidistant
from its end points.
• Any point equidistant from the end points of a line segment is on
the right bisector of it.
• The right bisectors of the sides of a triangle are concurrent.
• Any point on the bisector of an angle is equidistant from its arms.
• Any point inside an angle, equidistant from its arms, is on the bisector of it.
The bisectors of the angles of a triangle are concurrent.
• Right bisection of a line segment means to draw a perpendicular
at the mid point of line segment.
• Bisection of an angle means to draw a ray to divide the given
angle into two equal parts.


#theorem #class9 #math #maths #theorem12.1

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Class 9 - Mathematics - Chapter 12 - Lecture 1 - Theorem 12.1

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]