ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Retrievers Explained — The Memory Engine Behind LangChain AI | Video 23 | LangChain Series

langchain

retrievers

langchain retriever tutorial

langchain python

ai retrievers

langchain vectorstore

semantic search

embedding retrievers

langchain tutorial

langchain for beginners

ai memory system

ai knowledge base

langchain series

langchain concepts

context retrieval

ai workflow

ai reasoning

langchain wikipedia retriever

gemini langchain

python ai tutorial

Автор: LearningHub

Загружено: 2025-10-14

Просмотров: 12

Описание: Welcome back, everyone!
By now, we’ve explored how data flows through LangChain — from prompts and embeddings to vector stores. But what happens when your AI needs to find specific information hidden within all that data? That’s where Retrievers come in.

🧠 What are Retrievers?
Retrievers are like the search engine or librarian of your LangChain system. They don’t generate new content — instead, they fetch the most relevant pieces of information from your stored documents when a user asks a question.

When a query comes in, the retriever scans through all the indexed data — PDFs, web pages, notes — and returns only the most meaningful chunks related to the query.

Under the hood, retrievers work closely with Vector Stores.
Each document is transformed into an embedding, a numerical representation of meaning. When a question arrives, it too becomes an embedding — and the retriever finds the closest matches. This way, it’s not just matching words but truly understanding semantic meaning.

⚙️ In this video, we’ll explore:
1️⃣ How retrievers connect your stored knowledge with your AI models
2️⃣ The difference between keyword-based and embedding-based retrieval
3️⃣ How retrievers ensure your LLM gets only the most relevant context
4️⃣ Why retrievers are critical for scalable, context-aware AI systems

By the end of this video, you’ll understand how retrievers act as the bridge between your static data and your intelligent AI, powering dynamic, knowledge-grounded conversations.

And in this video, we’ll dive deeper into one of the most useful retrievers — the WikipediaRetriever, to see how we can fetch real-time knowledge directly from Wikipedia.

Complete Playlist:    • LangChain Tutorials  

Generative AI Playlist:    • Generative AI  

LangGrpah Playlist:    • LangGraph Tutorials  

Hands on ML with PyTorch Playlist:    • Hands on ML with PyTorch  

Subscribe for more programming and machine learning related content

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Retrievers Explained — The Memory Engine Behind LangChain AI | Video 23 | LangChain Series

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]