ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Compile & DAG view: compare model SQL vs compiled SQL in-UI

account usage

analytics engineering

compile sql

dag view

data engineering

data governance

data modeling

data warehouse

dbt core

dbt deps

dbt projects on snowflake

dbt run

dbt tests

dev test prod

elt

git integration

in platform dbt

managed environment

observability

orchestration

query history

secure execution

snowflake

snowflake tasks

snowflake workspaces

snowpark

sql modeling

tasty bites demo

warehouse scheduling

Автор: Luca Berton

Загружено: 2025-11-28

Просмотров: 1

Описание: Snowflake just made modeling a lot simpler. In this talk/demo, we walk through dbt Projects on Snowflake—a new capability that lets you run open-source dbt Core inside Snowflake, right next to your governed data. That means one UI, one security model, Snowflake warehouses for execution, built-in scheduling with Snowflake Tasks, first-class Git integration, and end-to-end observability.

If you already keep your data in Snowflake and need the T in ELT, this is a clean way to onboard teams to dbt without managing extra infra (no separate runners, no airflow required).

⏱️ Chapters

00:00 Screen share & setup hiccup (keepin’ it real)
00:25 What is “dbt Projects on Snowflake”? (dbt Core, inside Snowflake)
01:12 Why run dbt in Snowflake: simpler onboarding, governance, debugging
02:05 Self-service projects: create new or connect an existing Git repo
02:42 How it’s modeled: a new schema-level object for dbt projects
03:18 Workspaces IDE tour: models, tests, packages, profiles
04:10 Environments & profiles (dev/test/prod) without storing user creds
04:42 Compile & DAG view: compare model SQL vs compiled SQL in-UI
05:28 Managing dependencies (dbt deps) and dbt packages in a secure env
06:10 Scheduling with Snowflake Tasks (cron or UI)—no extra runner
07:00 Monitoring runs: logs, query IDs, memory usage, timings, lineage
07:42 Git workflows in the browser (branches, commits, push from UI)
08:25 Demo: run on dev warehouse, observe logs & Account Usage data
09:10 Use cases & scope: best for ELT when data already lives in Snowflake
09:48 Positioning vs dbt Cloud / external orchestration
10:20 Bonus: account-level observability & cost transparency
10:52 Links, sample repo (Tasty Bites), next steps & user group info

What you’ll learn
How dbt Core runs natively in Snowflake (governed, secure, observable)
Creating a project from scratch or connecting your GitHub repo
Using the Workspaces IDE to edit YAML/SQL/Python and view the DAG
Running compile, deps, test, and run directly in the UI
Scheduling jobs via Snowflake Tasks (UI or cron) with no extra infra
Monitoring: dbt logs, query IDs, timings, and Account Usage insights
Best practices for dev/test/prod profiles and warehouse selection
When to pick dbt Projects on Snowflake vs dbt Cloud / external runners

Who is this for?
Analytics engineers, data engineers, and BI teams who already load data into Snowflake and want a secure, low-ops path to production dbt with first-party scheduling and monitoring.

👉 Tell me in the comments: what’s your biggest blocker to shipping dbt models today—env management, scheduling, or debugging? I’ll cover the top issues in a follow-up.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Compile & DAG view: compare model SQL vs compiled SQL in-UI

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]