Is e^x=ln(x) solvable?
Автор: blackpenredpen
Загружено: 2020-09-26
Просмотров: 898495
Описание:
We will solve an interesting algebraic equation involving both exponential and logarithm, namely e^x=ln(x). Although the graphs of y=e^x and y=ln(x) do not intercept, we can actually find some complex solutions to this equation. We do need to use the Lambert W function tho. So see here for a detailed lecture. Lambert W function Lecture: • Lambert W Function (domain, range, approxi...
We will make b^x and log_b(x) tangent to each other here: • the famous equation b^x=log_b(x)
Check out Mu Prime Math's video on when is f(x)=f^-1(x)=x true: • When does f(x)=f⁻¹(x) mean f(x)=x? - Cube ...
💪 Support this channel, / blackpenredpen
🛍 Euler's Identity e^(iπ)+1=0 t-shirt: https://amzn.to/427Seae
Subscribe for more math for fun videos 👉 @blackpenredpen
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: