ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

An Infinite Stack of Boxes and the Painter's Paradox: Infinite Surface Area but Finite Volume!

Автор: Infinity Manifestations

Загружено: 2020-11-05

Просмотров: 148

Описание: In this video we discuss a version of the Gabriel's horn aka Torricelli's trumpet paradox without using integration. We replace the trumpet with a stack of infinitely many boxes to bypass improper integration. Aside from reference to a couple of familiar infinite series (we can't bypass infinity!) no serious mathematical calculations are necessary.

The essence of the paradox is the same: the stack has infinite surface area but finite volume. We also discuss the "Painter's Paradox" which is usually tied to these paradoxes through the concept of infinite surface area but a finite volume.

We also discuss a variation that has both finite height and volume but still infinite surface area. With small units of length like inches or centimeters we can hold a small stack of boxes with infinite surface area in the palm of one hand!

These constructions are logically allowed quirks of infinity in mathematics. They aren't physically possible so paradoxes arise only when we insist on interpreting mathematical constructions involving infinity as physical entities. Material objects like boxes, trumpets or paint don't admit infinitesimal reductions of the type allowed in mathematical constructions. We may push for the painter's paradox a bit and define a two dimensional idealization of actual paint. If so then a finite amount of it has zero volume (how many squares stacked on top of each other gives a cube?) We need an infinite amount of idealized paint to fill up a three dimensional volume, so we don't have a paradox.

These types of paradoxes that involve convergence of infinite sequences and series are essential in understanding *infinity and its manifestations*!
_________________________
To gain a deeper understanding of limits, continuity and the infinite in mathematics, read my book "Achieving Infinite Resolution: a gentle look at the role of infinity in calculus". You can check its table of contents and more here:
https://www.amazon.com/gp/product/B08...

More information about Gabriel's Horn and the Painter's paradox:
https://thatsmaths.com/2017/04/13/tor...
https://en.wikipedia.org/wiki/Gabriel...

Videos about Gabriel's Horn and the Painter's paradox:
   • Gabriel's Trumpet / Horn Paradox  
   • Infinite Surface Area but Finite Volume!?!...  
   • Gabriel's Horn paradox (finite volume but ...  

Information about the Basel Problem:
https://en.wikipedia.org/wiki/Basel_p...

Videos about the Basel Problem:
   • Euler Solves The Basel Problem  
   • Why is pi here?  And why is it squared?  A...  

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
An Infinite Stack of Boxes and the Painter's Paradox: Infinite Surface Area but Finite Volume!

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Paradox of the Staircase Length vs the Diagonal Length (2 vs square-root of 2)

Paradox of the Staircase Length vs the Diagonal Length (2 vs square-root of 2)

The Paradox of Staircase Length vs the Diagonal Explained: A Balancing Act

The Paradox of Staircase Length vs the Diagonal Explained: A Balancing Act

Топ-12 самых опасных кислот в мире: от мочевой до фторантимоновой

Топ-12 самых опасных кислот в мире: от мочевой до фторантимоновой

What If You Keep Slowing Down?

What If You Keep Slowing Down?

The Liquid Hammer Toy You Can't Buy

The Liquid Hammer Toy You Can't Buy

Infinity Paradoxes

Infinity Paradoxes

Algebra Problem | Maths olympiad question solution | you should learn this maths tricks |

Algebra Problem | Maths olympiad question solution | you should learn this maths tricks |

Infinitely Many Balls in the Chute or None? A Paradox

Infinitely Many Balls in the Chute or None? A Paradox

Explaining the Paradox of Infinitely Many Balls in a Chute: A Case of Point-wise Convergence

Explaining the Paradox of Infinitely Many Balls in a Chute: A Case of Point-wise Convergence

Voyager 2 изменил направление — и открытие ШОКИРУЕТ ВЕСЬ МИР

Voyager 2 изменил направление — и открытие ШОКИРУЕТ ВЕСЬ МИР

Минуту Назад: Телескоп James Webb ТОЛЬКО ЧТО РАЗРУШИЛ ФИЗИКУ

Минуту Назад: Телескоп James Webb ТОЛЬКО ЧТО РАЗРУШИЛ ФИЗИКУ

ТОЛЬКО ЧТО: межзвёздный объект 3I/ATLAS изменил траекторию — страхи подтверждаются

ТОЛЬКО ЧТО: межзвёздный объект 3I/ATLAS изменил траекторию — страхи подтверждаются

ZIELIŃSKI Z GOLEM! CO ZA FORMA POLAKA! INTER PRĘŻY MUSKUŁY, PODPUŚCILI I SKASOWALI | SKRÓT

ZIELIŃSKI Z GOLEM! CO ZA FORMA POLAKA! INTER PRĘŻY MUSKUŁY, PODPUŚCILI I SKASOWALI | SKRÓT

Why Time Is a Byproduct | Leonard Susskind

Why Time Is a Byproduct | Leonard Susskind

7 Quantum Mysteries Feynman Exposed That Defy Common Sense

7 Quantum Mysteries Feynman Exposed That Defy Common Sense

JAKUCK, ROSJA 2026: PRZETRWANIE W TEMPERATURZE -71°C! - NAJZIMNIEJSZE MIASTO NA ŚWIECIE DOKUMENTALNY

JAKUCK, ROSJA 2026: PRZETRWANIE W TEMPERATURZE -71°C! - NAJZIMNIEJSZE MIASTO NA ŚWIECIE DOKUMENTALNY

Наш ЕДИНСТВЕННЫЙ способ ОТПРАВИТЬ К ДРУГИМ ЗВЁЗДАМ 💤Лекция для сна 💤 СОН ЗА 5 МИНУТ

Наш ЕДИНСТВЕННЫЙ способ ОТПРАВИТЬ К ДРУГИМ ЗВЁЗДАМ 💤Лекция для сна 💤 СОН ЗА 5 МИНУТ

NASA Reveals What They Got Wrong About Pluto — What New Horizons Discovered

NASA Reveals What They Got Wrong About Pluto — What New Horizons Discovered

James Webb Looked

James Webb Looked "TOO DEEP" Into Space… What It Found Is Disturbing | Brian Cox

The Neanderthal Problem That Scientists Don't Want To Discuss

The Neanderthal Problem That Scientists Don't Want To Discuss

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]