ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

The Importance of LLM Monitoring

AI Monitoring

Production AI

AI Quality

Agentic AI

MLOps

AI Testing

Model Drift

Автор: AnswerRocket

Загружено: 2025-10-09

Просмотров: 18

Описание: Your AI system passed all your test cases, so you deployed it to production. But here's what most teams miss: they only tested the questions they expected to work. They never provoked the system, never looked for boundaries, never checked if failures were stacking up across multiple interactions.

In this essential discussion, the gang reveals why monitoring AI in production is like checking in on a teenager—you need to look beyond what they tell you. You'll discover why subtle failures compound over multi-turn conversations, how to detect drift before it becomes a crisis, and why visibility into every step of an agent's reasoning is critical for maintaining quality over time.

In this video, you'll learn:
✅ The teenager analogy: Why surface-level monitoring misses critical issues
✅ Why you must test the "anti questions"—things you expect to fail
✅ How tiny errors stack across multiple agent turns (the telephone game effect)
✅ The difference between active monitoring and passive check-ins
✅ Why monitoring start and end points isn't enough for complex agents
✅ Building test harnesses that detect drift and outliers in real-time

Follow the Gang
Mike Finley, CTO, AnswerRocket -   / mikefinley  
Pete Reilly, COO, AnswerRocket -   / petereilly  
Andy Sweet, VP Enterprise AI Solutions, AnswerRocket -   / andrewdsweet  
Stew Chisam, Operating Partner, StellarIQ -   / stewart-chisam-7242543  

Chapters:
00:00 The Teenager Test: Looking Beyond Surface Answers
01:29 Active Maintenance: What Production AI Really Requires
01:43 Automated Evals vs. Real-World Monitoring
02:30 The Stacking Failure Problem: When Small Errors Compound
03:45 Chain Visibility: Why You Must Monitor Every Turn

How are you monitoring your AI systems in production? What's caught you by surprise?

#AIMonitoring #ProductionAI #AIQuality #AgenticAI #MLOps #AITesting #ModelDrift

____________________________________________________________________

SUBSCRIBE TO OUR PODCAST

AI, Actually

Tired of the AI hype? So are we. Welcome to AI, Actually: the podcast that cuts through the noise and gets real about how artificial intelligence can work for your business. In each episode, our resident AI and business transformation experts–along with occasional industry guests–hold a candid, jargon-free conversation on what it takes to get actual value from AI.

Join us as we tackle topics like: the real difference between the latest LLM models, why generic AI can't make sense of your messy company data, how to get your GenAI use case off the ground, and what the rise of AI agents means for your business. This is your practical playbook for putting AI to work. No PhD required.

AI, Actually is produced by AnswerRocket. Since 2013, our enterprise AI solutions have helped Fortune 500 companies achieve measurable results through their AI transformations. This podcast is where we share what we’ve learned.

____________________________________________________________________

LEARN MORE ABOUT ANSWERROCKET

https://answerrocket.com/

FOLLOW US ON SOCIAL MEDIA

Facebook:   / answerrocket  
Instagram:   / answerrocket  
LinkedIn:   / answerrocket  
Twitter:   / answerrocket  

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
The Importance of LLM Monitoring

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]