ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

How to Aggregate Rows in a DataFrame by Grouping IDs in Pandas

Автор: vlogize

Загружено: 2025-05-28

Просмотров: 0

Описание: Discover how to efficiently aggregate rows in a Pandas DataFrame based on ID numbers, and prioritize specific types using Python!
---
This video is based on the question https://stackoverflow.com/q/65676327/ asked by the user 'big_soapy' ( https://stackoverflow.com/u/13123861/ ) and on the answer https://stackoverflow.com/a/65676360/ provided by the user 'perl' ( https://stackoverflow.com/u/6792743/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Aggregating rows with same id number and inputting column value based on aggregation

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Aggregate Rows in a DataFrame by Grouping IDs in Pandas

When working with data, we often encounter situations where we need to aggregate rows based on unique identifiers. In this guide, we'll tackle a common problem: how to aggregate rows in a Pandas DataFrame, specifically focusing on unique ID numbers and prioritizing certain values based on type.

The Problem Statement

Let's consider a scenario where we have the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

The DataFrame looks like this:

[[See Video to Reveal this Text or Code Snippet]]

In this DataFrame, we see that ID 1123 has both Red and Black Type, while ID 9788 also has a mix of Red and Black. Our goal is to create a new DataFrame where each ID maps to its type based on the following rules:

If an ID has both Red and Black, it should be recorded as Red.

If an ID only has Black, then it should remain Black.

Expected Output

After processing, the DataFrame should look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

Step 1: Utilizing groupby and max

To achieve our goal, we can leverage the powerful groupby function in Pandas, in conjunction with the max() method. Here's how:

[[See Video to Reveal this Text or Code Snippet]]

Explanation

groupby('ID', as_index=False): This groups the DataFrame by the ID column and ensures that the original index is not retained.

['Type'].max(): This takes the maximum value of the Type column within each group. Since Red is considered greater than Black, IDs with both types will return Red.

Result

When we execute the above code, we get the following output:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Handling More Types

If your data contains more types and you want to define a specific order for prioritization, you can convert the Type column to an ordered categorical type before performing the aggregation. Here’s how you can do that:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Update

We use pd.Categorical to define an order: Black < Green < Blue < Red.

The same groupby operation with max() will then respect this order, giving precedence to Red over Black and other colors in future operations.

Final Thoughts

By leveraging Pandas' grouping capabilities and categorical types, we can efficiently aggregate DataFrame rows based on IDs while prioritizing specific values. This method not only simplifies your DataFrame manipulation tasks but also enhances the clarity and usability of your data.

Feel free to explore more on how to manipulate DataFrames with Pandas as it opens up numerous possibilities for data analysis!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
How to Aggregate Rows in a DataFrame by Grouping IDs in Pandas

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

How to Do Data Cleaning (step-by-step tutorial on real-life dataset)

How to Do Data Cleaning (step-by-step tutorial on real-life dataset)

Learn how to use PANDAS in Python in 15 minutes - with 10 real examples

Learn how to use PANDAS in Python in 15 minutes - with 10 real examples

Complete Python Pandas Data Science Tutorial! (2025 Updated Edition)

Complete Python Pandas Data Science Tutorial! (2025 Updated Edition)

Merging DataFrames in Pandas | Python Pandas Tutorials

Merging DataFrames in Pandas | Python Pandas Tutorials

Убей скучный Excel: сделай ВЕБ-дашборд без кода с помощью ИИ (пошаговый гайд)

Убей скучный Excel: сделай ВЕБ-дашборд без кода с помощью ИИ (пошаговый гайд)

Исследовательский анализ данных с помощью Pandas Python

Исследовательский анализ данных с помощью Pandas Python

Как создать уникальные идентификаторы из данных Excel — автоматизация уникальных идентификаторов ...

Как создать уникальные идентификаторы из данных Excel — автоматизация уникальных идентификаторов ...

Group By and Aggregate Functions in Pandas | Python Pandas Tutorials

Group By and Aggregate Functions in Pandas | Python Pandas Tutorials

КАК НЕЛЬЗЯ ХРАНИТЬ ПАРОЛИ (и как нужно) за 11 минут

КАК НЕЛЬЗЯ ХРАНИТЬ ПАРОЛИ (и как нужно) за 11 минут

Фишки Excel, которые я использую КАЖДЫЙ ДЕНЬ! ЭТО нужно каждому

Фишки Excel, которые я использую КАЖДЫЙ ДЕНЬ! ЭТО нужно каждому

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Python Pandas Tutorial (Part 8): Grouping and Aggregating - Analyzing and Exploring Your Data

Роковая ошибка Jaguar: Как “повестка” в рекламе добила легенду британского автопрома

Роковая ошибка Jaguar: Как “повестка” в рекламе добила легенду британского автопрома

LEARN PANDAS in about 10 minutes! A great python module for Data Science!

LEARN PANDAS in about 10 minutes! A great python module for Data Science!

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

4 часа Шопена для обучения, концентрации и релаксации

4 часа Шопена для обучения, концентрации и релаксации

Перестаньте использовать длинные формулы: попробуйте вместо них «*» и «?»

Перестаньте использовать длинные формулы: попробуйте вместо них «*» и «?»

Two-hour relaxing screensaver with Valentine's day abstract background, flying hearts

Two-hour relaxing screensaver with Valentine's day abstract background, flying hearts

Python Pandas Tutorial 7. Group By (Split Apply Combine)

Python Pandas Tutorial 7. Group By (Split Apply Combine)

Выучите R за 39 минут

Выучите R за 39 минут

Vintage Floral Free Tv Art Wallpaper Screensaver Home Decor Samsung Oil Painting Digital Wildflower

Vintage Floral Free Tv Art Wallpaper Screensaver Home Decor Samsung Oil Painting Digital Wildflower

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]