3n+1 Ep69: What's the fate of 7 under the 5n+1 rule?
Автор: Math Kook
Загружено: 2024-05-13
Просмотров: 992
Описание:
It's a longstanding conjecture than 7 never reaches 1 under the 5n+1 rule. 007 seems to be on a bumpy road to infinity, but who knows? Here's a 16-state program that stops iff 7 reaches 1, which would refute the conjecture. If the program runs for BB(16) steps, it will never stop, which would confirm the conjecture. What's the smallest program that achieves the same goal? #collatz
initial A,
accept Z,
A _ L 1 r,
B _ B _ r, B 1 C 1 r,
C _ Z _ l, C 1 D 1 r,
D _ F 1 l, D 1 E 1 r,
E _ K _ l, E 1 D 1 r,
F 1 G _ l, F _ F _ l,
G 1 H _ l,
H _ J _ r, H 1 I 1 r,
I _ I _ r, I 1 D 1 l,
J _ J _ r, J 1 B 1 l,
K _ L _ r, K 1 L _ r,
L _ M _ r, L 1 L 1 r,
M _ N 1 l, M 1 N 1 r,
N _ M 1 r, N 1 O 1 l,
O _ P 1 l, O 1 O 1 l,
P _ B 1 l, P 1 L _ r
This program can be tested at alistat dot eu slash online slash turingmachinesimulator.
Reference on Erdos conjecture: "On the hardness of knowing busy beaver values BB(15) and BB(5,4)" (Tristan Stérin, Damien Woods), 2021.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: