Understanding Multi Layer Perceptron in Deep Learning |GATE 2026|UGCNET 2026
Автор: Sujit Das Academy
Загружено: 2026-01-12
Просмотров: 70
Описание:
In this video, we explain the Multi-Layer Perceptron (MLP), one of the most fundamental architectures in Deep Learning.
An MLP is a feed-forward neural network consisting of an input layer, one or more hidden layers, and an output layer, trained using forward propagation and backpropagation.
This lecture focuses on the definition, structure, and learning mechanism of MLPs, making it ideal for GATE, UGC NET, and university-level courses in AI / Machine Learning / Deep Learning.
⏱️ Chapters (3:56 mins)
00:00 – 00:40
Introduction to Multi-Layer Perceptron (MLP)
00:40 – 01:30
Components of MLP: Input, Hidden, and Output Layers
01:30 – 02:20
Neuron Computation: Weights, Bias, and Activation Functions
02:20 – 03:10
Forward Pass in MLP
03:10 – 03:40
Backward Pass & Gradient Descent (Backpropagation)
03:40 – 03:56
Summary & Key Takeaways
🎯 Who Should Watch
Deep Learning beginners
GATE 2026 aspirants
UGC NET 2026 (Computer Science) candidates
UG & PG students of AI / ML
• Introduction to Deep Learning | What is De...
• Artificial Neuron and Its analogy with Bio...
• McCulloch Pitts Neuron| Deep Learning| UGC...
• Logic Gates With MCP neurons| Deep Learnin...
• Decision Boundary for MCP Logic Gates|Deep...
• Understanding Single Layer Perceptron (SLP...
• Decision Boundary for Perceptron| Deep Lea...
• Perceptron Learning Algorithm | Deep Learn...
• Understanding How Perceptron Learning Algo...
• Separability and Non separable problems| D...
• Activation Function in Neural Network Expl...
• Activation Function Part 2 Step Activatio...
• Sigmoid Activation Function Explained | Ac...
• Hyperbolic Tangent (Tanh) activation funct...
• Vanishing Gradient Problem Explained|Deep ...
#MultiLayerPerceptron
#MLP
#DeepLearning
#NeuralNetworks
#MachineLearning
#Backpropagation
#ArtificialIntelligence
#GATE2026
#UGCNET2026
#AI
#DeepLearningBasics
📘 This video builds the foundation for understanding deep neural networks and prepares you for advanced topics like backpropagation, CNNs, and Transformers.
👍 Don’t forget to Like, Share, and Subscribe for more Deep Learning lectures!
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: