Sum of Interior Angles of a Polygon | The (n-2) 180 Formula Explained
Автор: Hub Beyond Numbers
Загружено: 2025-11-06
Просмотров: 47
Описание:
▶️ START HERE! Watch the full Geometry Course for FREE: • Plane Geometry
Welcome to this essential lesson on Polygon Geometry! This video teaches you the simple yet powerful formula to calculate the Sum of the Interior Angles of any polygon, no matter how many sides it has.We break down the key formula:$$\text{Sum of Interior Angles} = (n-2) \times 180^\circ$$where 'n' is the number of sides of the polygon.
This video demonstrates:The Proof: A visual explanation showing how every polygon can be divided into triangles to derive the $(n-2) \times 180^\circ$ formula.
Applications: Step-by-step solved examples for finding the total interior angle sum of various polygons (quadrilaterals, pentagons, hexagons, etc.).Regular Polygons: How to use the formula to find the measure of a single interior angle of a regular polygon.Mastering this formula is crucial for solving angle-based problems in both regular and irregular polygons.
📚 About this video:This math tutorial is essential for students covering Polygon Properties in Geometry and Technical Drawing.#InteriorAnglesOfAPolygon #PolygonFormula #SumOfAnglesInAPolygon #GeometryTutorial #RegularPolygon #SolvedMath #Angles
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: