ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Think Like a Data Architect: The 3 States of Data

Автор: Harsha Guggilla

Загружено: 2025-12-26

Просмотров: 99

Описание: States of Data for Data Engineers — in this video we’ll make “data in motion vs data at rest vs data in use” feel so clear that you can explain it calmly on a whiteboard, and actually use it when you design pipelines, debug incidents, or discuss architecture.

Most beginners learn tools first — Spark, Airflow, dbt, SQL, a warehouse, a lakehouse. But senior engineers quietly think in something more fundamental:

What state is the data in right now?
Is it moving between systems? Is it stored somewhere? Or is it being actively processed / queried / viewed?

That single lens changes how you reason about:

reliability and failure modes (timeouts, retries, duplicates, corruption, wrong joins)
performance and cost (throughput vs storage layout vs query behavior)
security and risk (in-flight protection vs storage access vs what’s exposed during compute)
monitoring and observability (lag vs completeness vs runtime / query latency)

What you’ll learn in this video

You’ll understand the three states of data in a simple, practical way:

1) Data in motion
Any time data is traveling between systems over a network — ingestion, API pulls, CDC, BI query results coming back, streaming events, file transfers.

2) Data at rest
Any time data is stored and sitting somewhere — tables, Delta/Parquet files, backups, logs in object storage, partitions waiting to be read.

3) Data in use
Any time something is actively touching the data — a Spark job in memory doing joins/aggregations, a warehouse engine executing a query, a dashboard rendering results on screen, a model loading features to compute a prediction.

The one end-to-end example (so it sticks)

We don’t list ten random examples. We follow one order event through a real flow:

Customer → App → Operational DB → Ingestion → Raw storage → Transform/model → Warehouse → BI dashboard

And at each step, we label the dominant state:

in motion when it travels
at rest when it’s stored
in use when compute (or a human) is actively working with it

Once you see that clearly, you’ll start spotting design decisions instantly:

“This problem is an in motion problem” (retries, idempotency, ordering, backpressure)
“This is a data at rest problem” (format, partitioning, schema evolution, recovery)
“This is a data in use problem” (query planning, joins, caching, concurrency, compute sizing)

Why this matters technically (not just interviews)

If you’re building data systems, you’re constantly making tradeoffs. This mental model forces you to be specific:

Are you optimizing transfer and latency? (in motion)
Are you optimizing storage layout and long-term risk/cost? (at rest)
Are you optimizing computation and access patterns? (in use)

And when something breaks, you debug faster because you stop guessing randomly. You narrow down where the failure belongs — which state is dominant — and you apply the right guardrails in the right place.

A simple exercise you can do today

Take one pipeline you already know: source → ingest → store → transform → serve → dashboard
Write it as boxes, and label each step: motion / rest / use.

Do it once and you’ll start thinking like a system designer, not just a tool operator.

If you’re preparing for senior interviews

This topic shows up everywhere in system design:

“Walk me through the end-to-end flow.”
“Where does the data live?”
“What happens when it moves, when it’s stored, and when it’s queried?”
If you can answer using motion / rest / use, you’ll sound structured, calm, and senior.

CTA
If this video helped you, like and subscribe — the next video builds directly on this:
“How to protect data in each state (in motion, at rest, in use)” in a way that’s simple and interview-ready.

And comment this (just one line):
Which state is easiest for you — motion, rest, or use — and which one feels most confusing right now?
Your answers will tell me where to go deeper next.

#DataEngineering #DataArchitecture #systemdesign

What are the states of data in data engineering?
What is data in motion vs data at rest vs data in use?
How do you explain data in motion and data at rest in interviews?
Why do senior data engineers think about states of data?
How do you map a data pipeline to motion/rest/use?
What are common failure modes for data in motion?
What are common failure modes for data at rest and data in use?
How do retries and idempotency relate to data in motion?
How does partitioning relate to data at rest?
How do joins and aggregations relate to data in use?


data engineering, data engineer, states of data, data states, data in motion, data at rest, data in use, data lifecycle, data flow, data pipeline, ETL, ELT, streaming vs batch, CDC, ingestion pipeline, data lake, lakehouse, data warehouse, delta lake, parquet, spark, dbt, sql, system design, data architecture, observability, monitoring data pipelines, debugging data pipelines, idempotency, retries, partitioning, schema evolution, query performance, power bi, tableau, looker, analytics engineering

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Think Like a Data Architect: The 3 States of Data

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Data Warehouse против Data Lake против Data Lakehouse

Data Warehouse против Data Lake против Data Lakehouse

The Medallion Data Architecture (Pros & Cons)

The Medallion Data Architecture (Pros & Cons)

Security in Data Engineering Interviews: How Seniors Answer

Security in Data Engineering Interviews: How Seniors Answer

Data Transformation for Data Engineers

Data Transformation for Data Engineers

How Source Systems Work in Data Engineering (Databases, APIs, Streams)

How Source Systems Work in Data Engineering (Databases, APIs, Streams)

ETF or Stocks? Why You Should Not Diversify - Warren Buffet

ETF or Stocks? Why You Should Not Diversify - Warren Buffet

Конвейер данных против потока данных против ярлыка против блокнота в Microsoft Fabric

Конвейер данных против потока данных против ярлыка против блокнота в Microsoft Fabric

Data Lake vs. Data Warehouse vs. Data Lakehouse: Which One to Choose?

Data Lake vs. Data Warehouse vs. Data Lakehouse: Which One to Choose?

Что такое DBT и почему он так популярен — Введение в инфраструктуру данных, часть 3

Что такое DBT и почему он так популярен — Введение в инфраструктуру данных, часть 3

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Извлечение данных из API для специалистов по обработке данных: основы и сложности, с которыми вам...

Извлечение данных из API для специалистов по обработке данных: основы и сложности, с которыми вам...

ETL vs ELT: Powering Data Pipelines for AI & Analytics

ETL vs ELT: Powering Data Pipelines for AI & Analytics

I Made a Classic Refactoring Mistake

I Made a Classic Refactoring Mistake

Очень простой ETL-конвейер в Snowflake

Очень простой ETL-конвейер в Snowflake

Ключевые навыки в области искусственного интеллекта к 2026 году

Ключевые навыки в области искусственного интеллекта к 2026 году

Role-Based Access Control(RBAC) - System Design for Data Engineers (Interview-Ready)

Role-Based Access Control(RBAC) - System Design for Data Engineers (Interview-Ready)

Что такое конвейер данных? | Почему он так популярен?

Что такое конвейер данных? | Почему он так популярен?

What is a Data Pipeline! Data Pipelines Explained for Beginnes!

What is a Data Pipeline! Data Pipelines Explained for Beginnes!

Python for ETL | Live Instruction (Dataset included!)

Python for ETL | Live Instruction (Dataset included!)

Object Storage in System Design Interviews w/ Ex-Meta Staff Engineer

Object Storage in System Design Interviews w/ Ex-Meta Staff Engineer

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]