LangChain RunnableLambda: Integrating Custom Python Logic into FCEL Chains | Video #19
Автор: Vikas Munjal Ellarr
Загружено: 2026-01-27
Просмотров: 3
Описание:
What if you need to run a specific Python function in the middle of your AI pipeline? 🐍 In Video #19 of our LangChain Full Course, we master RunnableLambda.
While LangChain provides many built-in tools, real-world apps often require custom logic—like cleaning text, calling a custom API, or performing a calculation. I will show you how to wrap any Python function into a RunnableLambda so it can be used with the pipe (|) operator. This gives you 100% control over the data flowing through your FCEL (Functional Chain Expression Language) pipelines.
✅ In this tutorial, we cover:
What is a RunnableLambda? Turning standard Python functions into chain-linkable components.
The Power of Customization: When to use a Lambda instead of a standard OutputParser.
Synchronous vs. Asynchronous: How RunnableLambda handles different function types.
Data Transformation: Modifying the input before it reaches the Prompt or the LLM.
Practical Demo: Creating a function that processes text (like word counts or formatting) and plugging it directly into a RunnableSequence.
Why this is a Game Changer: Mastering RunnableLambda means you are no longer limited by the "out-of-the-box" features of LangChain. You can now bridge the gap between pure Python coding and AI orchestration.
#LangChain #RunnableLambda #FCEL #PythonProgramming #GenerativeAI #OpenAI #LLM #AITutorial #Coding #SoftwareEngineering #CustomLogic #AIWorkflow #PythonFunctions #LangChainCore
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: