Special Cases: The Difference of Two Squares & Missing Terms
Автор: Maths Advice On Your Device
Загружено: 2026-02-14
Просмотров: 7
Описание:
👉Full courses https://www.mathsadviceonyourdevice.com/
⚠️ What happens when a quadratic equation is “missing” a term?
0:00 – Review: the Area Method
0:08 – The “zero middle term” mystery
0:58 – Geometric proof: x² − 9
1:19 – Handling coefficients: 2x² − 200
1:40 – Quadratics with no constant term (single bracket)
2:20 – Practice and summary
In this lesson, we apply the Reverse Area Method to special cases that often confuse students — including the Difference of Two Squares and quadratics with no middle or no constant term.
By treating x² − 9 as a quadratic with a 0x middle term, students see that the same structural logic still applies.
Using geometry, we visually show that the area of x² − 3² is identical to a rectangle with sides (x + 3) and (x − 3)
No tricks. No memorisation. Just structure that makes sense 🧠📐
🎯 Key Takeaways for Teachers & Students
🔹 The 0x Concept
Why missing middle terms must be opposites (additive inverses) so they cancel
🔹 Difference of Two Squares
A geometric proof that
a² − b² = (a − b)(a + b)
🔹 Leading Coefficients Made Clear
Why expressions like
2x² − 200
should be simplified before factoring
🔹 Single-Bracket Factorisation
Understanding
x² + x
as a rectangle with width x
Who This Video Is For
🎯 Teachers who want students to understand factoring
📘 Students confused by “missing” terms
🚀 Anyone preparing for advanced algebra or Calculus
Access full courses, quizzes, and worksheets here:
👉 https://www.mathsadviceonyourdevice.com/
💎 Want More Like This?
🔎 Have a topic you’d like explained visually? Let me know
📅 New videos every week
💌 Contact: [email protected]
📌 Recommended Next Videos
📈 Gradient of a Parabola
• Gradient of a parabola (Ep. 1 of 5)
📊 Rules for Exponentials
• 🧠 From Blocks to Binary: Three-Step Method...
📐 Pythagoras’ Theorem (Visual Proof)
• Pythagoras Theorem Using Other Shapes (Ep....
What Is the Number e?
• WHAT IS THE NUMBER e AND WHERE DOES IT CO...
🧡 Why I Teach This Way
Doing maths is like going to the gym 💪
You build strength by doing, a little every day.
My mission is to make maths clear, logical, and achievable — for students and teachers.
#DifferenceOfSquares #QuadraticEquations #VisualMath
#AlgebraTeaching #CalculusPrep #MathEducation
#MathsAdviceOnYourDevice #FlippedMaths #STEM
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: