ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Автор: AutoML Seminars

Загружено: 2024-09-19

Просмотров: 1944

Описание: Title: The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Speaker: Robert Tjarko Lange (https://roberttlange.com/)

Abstract:

One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aids to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world’s most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scient....

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Real-time Experiments with an AI Co-Scientist - Stefania Druga, fmr. Google Deepmind

Real-time Experiments with an AI Co-Scientist - Stefania Druga, fmr. Google Deepmind

Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues

Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues

Машинное обучение без данных: обучение небольших моделей на 10 примерах.

Машинное обучение без данных: обучение небольших моделей на 10 примерах.

AI Scientist: Towards Fully Automated Scientific Discovery by Robert Lange | BLISS Speaker Series

AI Scientist: Towards Fully Automated Scientific Discovery by Robert Lange | BLISS Speaker Series

Scaling Exponents Across Parameterizations and Optimizers

Scaling Exponents Across Parameterizations and Optimizers

TabArena: A Living Benchmark for Machine Learning on Tabular Data

TabArena: A Living Benchmark for Machine Learning on Tabular Data

Резкий скачок цен в январе 🔺 Российская нефть упала ниже $40 за баррель || Дмитрий Потапенко*

Резкий скачок цен в январе 🔺 Российская нефть упала ниже $40 за баррель || Дмитрий Потапенко*

MCP vs API: Simplifying AI Agent Integration with External Data

MCP vs API: Simplifying AI Agent Integration with External Data

Can AI Improve Itself? [Chris Lu, Robert Lange, Cong Lu]

Can AI Improve Itself? [Chris Lu, Robert Lange, Cong Lu]

Do-PFN: In-Context Learning for Causal Effect Estimation

Do-PFN: In-Context Learning for Causal Effect Estimation

Google's AI Co-Scientist Explained

Google's AI Co-Scientist Explained

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Virtual Lab of AI Scientists

Virtual Lab of AI Scientists

Ilya: the AI scientist shaping the world

Ilya: the AI scientist shaping the world

Hyperband-based Bayesian Optimization for Efficient Black-box Prompt Selection

Hyperband-based Bayesian Optimization for Efficient Black-box Prompt Selection

SciAgents: Agentic AI for discovery, integrating knowledge graphs, LLMs & adversarial experts

SciAgents: Agentic AI for discovery, integrating knowledge graphs, LLMs & adversarial experts

Мои программы для Вайб-кодинга

Мои программы для Вайб-кодинга

carps: A Framework for Comparing N Hyperparameter Optimizers on M Benchmarks

carps: A Framework for Comparing N Hyperparameter Optimizers on M Benchmarks

Building a fully local

Building a fully local "deep researcher" with DeepSeek-R1

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]