ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Introducing RewardBench: The First Benchmark for Reward Models (of the LLM Variety)

Автор: Nathan Lambert

Загружено: 2024-03-20

Просмотров: 1340

Описание: Get to know my latest major project -- we're building the science of LLM alignment one step at a time.
Sorry about the glitchy noise! I didn't think it was so bad that I needed to kill it.

00:00 Brief Intro
02:34 Why Reward Models
05:35 RewardBench Paper
07:01 Dataset & Code Intro
14:20 Leaderboard Results

Abstract

Reward models (RMs) are at the crux of successful RLHF to align pretrained models to human preferences, yet there has been relatively little study that focuses on evaluation of those reward models. Evaluating reward models presents an opportunity to understand the opaque technologies used for alignment of language models and which values are embedded in them. To date, very few descriptors of capabilities, training methods, or open-source reward models exist. In this paper, we present REWARDBENCH, a benchmark dataset and code-base for evaluation, to enhance scientific understanding of reward models. The REWARDBENCH dataset is a collection of prompt-win-lose trios spanning chat, reasoning, and safety, to benchmark how reward models perform on challenging, structured and out-of-distribution queries. We created specific comparison datasets for RMs that have subtle, but verifiable reasons (e.g. bugs, incorrect facts) why one answer should be preferred to another. On the REWARDBENCH leaderboard, we evaluate reward models trained with a variety of methods, such as the direct MLE training of classifiers and the implicit reward modeling of Direct Preference Optimization
(DPO), and on a spectrum of datasets. We present many findings on propensity for refusals, reasoning limitations, and instruction following shortcomings of various reward models towards a better understanding of the RLHF process.

Links!
RewardBench paper (arxiv soon): https://github.com/allenai/reward-ben...
ReardBench Code: https://github.com/allenai/reward-bench
RewardBench Leaderboard: https://huggingface.co/spaces/allenai...
Interconnects post on Costs vs. Rewards vs. Preferences: https://www.interconnects.ai/p/costs-...
Interconnects post on why we need reward models: https://www.interconnects.ai/p/open-r...
Interconnects post on why we need reward models (p2): https://www.interconnects.ai/p/why-re...
Paper on history and risks of RLHF: https://arxiv.org/abs/2310.13595
Talk on history of RLHF:    • 15min History of Reinforcement Learning an...  
RewardBench dataset: https://huggingface.co/datasets/allen...
Other preference data test sets: https://huggingface.co/datasets/allen...
Reward bench results repo: https://huggingface.co/datasets/allen...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Introducing RewardBench: The First Benchmark for Reward Models (of the LLM Variety)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Experimenting with Reinforcement Learning with Verifiable Rewards (RLVR)

Experimenting with Reinforcement Learning with Verifiable Rewards (RLVR)

Early stages of the reinforcement learning era of language models

Early stages of the reinforcement learning era of language models

NoteBookLM + Kimi K2.5 is INSANE!

NoteBookLM + Kimi K2.5 is INSANE!

Open-source AI (and LLMs): Definitions, Finding Nuance, and Policy

Open-source AI (and LLMs): Definitions, Finding Nuance, and Policy

Как подходить к постобучению в приложениях искусственного интеллекта

Как подходить к постобучению в приложениях искусственного интеллекта

Client Gift Challenge - Day 4: Create Your PDF

Client Gift Challenge - Day 4: Create Your PDF

GRPO's new variants and implementation secrets

GRPO's new variants and implementation secrets

Stanford CS25: V4 I Aligning Open Language Models

Stanford CS25: V4 I Aligning Open Language Models

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

Recapping Open Models in 2025

Recapping Open Models in 2025

Мастер GitHub: от новичка до эксперта за 46 минут

Мастер GitHub: от новичка до эксперта за 46 минут

Кто пишет код лучше всех? Сравнил GPT‑5.2, Opus 4.5, Sonnet 4.5, Gemini 3, Qwen 3 Max, Kimi, GLM

Кто пишет код лучше всех? Сравнил GPT‑5.2, Opus 4.5, Sonnet 4.5, Gemini 3, Qwen 3 Max, Kimi, GLM

[Talk] Cornell Robotics Seminar: MPC in MBRL

[Talk] Cornell Robotics Seminar: MPC in MBRL

Экспресс-курс RAG для начинающих

Экспресс-курс RAG для начинающих

Direct Preference Optimization: Your Language Model is Secretly a Reward Model | DPO paper explained

Direct Preference Optimization: Your Language Model is Secretly a Reward Model | DPO paper explained

Traits of next generation reasoning models

Traits of next generation reasoning models

Ускоренный курс LangChain для начинающих | Учебное пособие по LangChain

Ускоренный курс LangChain для начинающих | Учебное пособие по LangChain

21 неожиданный способ использовать Gemini в повседневной жизни

21 неожиданный способ использовать Gemini в повседневной жизни

Stanford CS224N | 2023 | Lecture 10 - Prompting, Reinforcement Learning from Human Feedback

Stanford CS224N | 2023 | Lecture 10 - Prompting, Reinforcement Learning from Human Feedback

Разработка с помощью Gemini 3, AI Studio, Antigravity и Nano Banana | Подкаст Agent Factory

Разработка с помощью Gemini 3, AI Studio, Antigravity и Nano Banana | Подкаст Agent Factory

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]