Differentiable Physics (for Deep Learning), Overview Talk by Nils Thuerey
Автор: Nils Thuerey
Загружено: 2020-07-01
Просмотров: 9740
Описание:
In this talk Nils explains recent research works that shows how to employ differentiable PDE solvers for deep learning. A central aim here is to improve the outcomes of numerical simulations. Results for reducing the numerical error in iterative solvers, and long-term control of physical systems are demonstrated. Source code is available at: https://github.com/tum-pbs/PhiFlow
The two research papers discussed in the talk can be found at:
https://ge.in.tum.de/publications/202... & https://arxiv.org/pdf/2007.00016
https://ge.in.tum.de/publications/202... & https://arxiv.org/pdf/2001.07457
Addendum: the missing video at 33:45 is https://ge.in.tum.de/download/2020-ic... , it shows a much more "intuitive" solution compared to the single-case optimization.
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: