ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Video

Автор: Nils Berglund

Загружено: 2025-03-22

Просмотров: 1575

Описание: This is the 1500th video published on this channel (not counting a few videos I uploaded multiple times owing to compression issues). So thanks again all for watching, commenting, and providing new idea.
As usual for a milestone, I try to make a video that is somewhat special. In this case, it is the first simulation of a new type of equation, which is a particular case of Kuramoto model. The variables in this equation are angles, or phases, describing the state of a so-called phase oscillator. This oscillator could be a pendulum, a firefly, or any other system with a periodic motion. The dynamics of each oscillator is driven by two terms: a local term, which is just a rotation at constant angular speed, and a coupling to the four nearest neighbors. The coupling is proportional to the negative of the sine of the phase difference, which tends to align the phases, a phenomenon called synchronization.
The initial phases of the oscillators are random. The coupling soon leads neighboring oscillators to have similar phases. However, there is a topological feature, which is that the system develops singularities, which are points around which the phase makes a full turn. This singularities can move over time, and in some cases annihilate each other.
This video has four parts, using two different coupling intensities, and with and without an additional noise term:
Weak coupling, no noise: 0:00
Strong coupling, no noise: 1:10
Weak coupling, with noise: 2:20
Strong coupling, with noise: 3:30
In parts 2 and 4, the coupling between phases is 100 times larger than in parts 1 and 3. Parts 3 and 4 use an additional random forcing, which makes it easier for singularities to disappear. The color indicates the phase of the oscillator, taken modulo pi (instead of 2*pi), because this leads to nicer visuals.

The idea for this simulation comes from a recent research work of mine with two colleagues, looking at a one-dimensional version of this model:
https://www.researchgate.net/publicat...

Render time: 1 hour 20 minutes
Color scheme: Turbo, by Anton Mikhailov
https://gist.github.com/mikhailov-wor...

Music: "Future Freeway" by Adam MacDougall‪@AdamMacDougall-q2d‬

See also https://images.math.cnrs.fr/Des-ondes... for more explanations (in French) on a few previous simulations of wave equations.

#Kuramoto #synchronisation #synchronization

The simulation solves a partial differential equation by discretization.
C code: https://github.com/nilsberglund-orlea...
https://www.idpoisson.fr/berglund/sof...

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Video

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Video #1800: The Gray-Scott model

Video #1800: The Gray-Scott model

Adding more friction to particles on a sphere with dimples

Adding more friction to particles on a sphere with dimples

Video #100: 100 000 particles in a concave hectogon billiard

Video #100: 100 000 particles in a concave hectogon billiard

Автомат-лучник: наконец-то прорыв — Эпизод 2

Автомат-лучник: наконец-то прорыв — Эпизод 2

Kuramoto talks about the Kuramoto model

Kuramoto talks about the Kuramoto model

Prawda o kręceniu Terminatora szokuje

Prawda o kręceniu Terminatora szokuje

WIELKA WYPRAWA MARII WIERNIKOWSKIEJ W GŁĄB ROSJI #1

WIELKA WYPRAWA MARII WIERNIKOWSKIEJ W GŁĄB ROSJI #1

The Gray-Scott model with six seeds on a hex lattice

The Gray-Scott model with six seeds on a hex lattice

Episode 1: Kuramoto Model Part 1

Episode 1: Kuramoto Model Part 1

Disc-triangle resonators with different frequencies

Disc-triangle resonators with different frequencies

Networks of Oscillators That Synchronise Themselves - Prof Steven Strogatz - The Archimedeans

Networks of Oscillators That Synchronise Themselves - Prof Steven Strogatz - The Archimedeans

Trupy w kosmosie - radzieckie wypadki kosmiczne. Historia Bez Cenzury

Trupy w kosmosie - radzieckie wypadki kosmiczne. Historia Bez Cenzury

Disc-hexagon resonators with different frequencies

Disc-hexagon resonators with different frequencies

Onset of space-time chaos in the Gray-Scott model

Onset of space-time chaos in the Gray-Scott model

USA wprowadzają wojska / Flota zaatakowana / Zapadła decyzja

USA wprowadzają wojska / Flota zaatakowana / Zapadła decyzja

Opady marznące. Masowe oblodzenia i gołoledź. Odwilż na południu. Prognoza

Opady marznące. Masowe oblodzenia i gołoledź. Odwilż na południu. Prognoza

BROŃ JĄDROWA POZA KONTROLĄ. NOWY WYŚCIG NUKLEARNY

BROŃ JĄDROWA POZA KONTROLĄ. NOWY WYŚCIG NUKLEARNY

3D view of disc-square resonators

3D view of disc-square resonators

Spherical pool with pockets inside depressions

Spherical pool with pockets inside depressions

Spherical pool with pockets in deeper depressions

Spherical pool with pockets in deeper depressions

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]