1.27 Recurrence Relation Of Root Function| part-2 |T(n)=2T(√n)+log n |T(n)=T(∛n)+log n
Автор: Saket Codes
Загружено: 2025-06-10
Просмотров: 46
Описание:
In this video, we dive into two fascinating recurrence relations involving root functions — a unique twist from standard divide-and-conquer problems!
We solve the following recurrences:
1️⃣ T(n) = 2T(√n) + log n
2️⃣ T(n) = T(∛n) + log n
Using Back Substitution and the Master Method, we analyze the time complexity of these recursive functions step-by-step. You'll gain a deeper understanding of how to tackle non-traditional recurrence forms involving square roots and cube roots.
Whether you're preparing for algorithms, competitive programming, or interviews, this video will sharpen your recurrence-solving skills and give you powerful insights into analyzing recursive functions beyond the usual format.
🎯 What You’ll Learn:
How to handle recurrence relations with root-level shrinking
Applying the Master Theorem creatively
Step-by-step use of Back Substitution
Logarithmic and double-logarithmic time complexities explained clearly
📌 Perfect for:
CS/Engineering students
GATE / NET / university exam aspirants
DSA learners and enthusiasts
💡 Don't forget to Like 👍, Share 🔁, and Subscribe 🔔 for more algorithm tutorials!
#RecurrenceRelations
#AlgorithmAnalysis
#RootFunction
#BackSubstitution
#MasterMethod
#TimeComplexity
#DivideAndConquer
#DSA
#CompetitiveProgramming
#ComputerScience
#CodingInterview
#SquareRootRecurrence
#CubeRootRecurrence
#LearnAlgorithms
#GatePreparation
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: