ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Multi-Fidelity Machine Learning for Uncertainty Quantification | Dr. S. De | JHU-IITD SMaRT Seminar

Автор: JHU-IITD SMART

Загружено: 2025-09-12

Просмотров: 146

Описание: This talk is part of the Scientific Machine Learning Research Talks (SMaRT) Seminar Series, a joint initiative between Johns Hopkins University and IIT Delhi.

🔹 Speaker:
Dr. Subhayan De
Assistant Professor, Department of Mechanical Engineering
Northern Arizona University, USA

🔹 Talk Title:
Multi-Fidelity Machine Learning for Uncertainty Quantification

🔹 Date: Wednesday, September 10, 2025
Time: 7:30 PM IST | 2:00 PM GMT | 10:00 AM EDT

📄 Abstract

Uncertainty is inherent in engineering systems, arising from sources such as variability in material properties, incomplete knowledge of governing physics, and discretization errors. Capturing and propagating these uncertainties is essential for robust prediction, risk-aware decision-making, and design under uncertainty. Yet, traditional uncertainty quantification (UQ) methods like Monte Carlo simulations, can be prohibitively expensive for high-dimensional, nonlinear, and multiscale systems.

In this talk, Dr. De introduces a multi-fidelity machine learning framework that combines bi-fidelity data fusion, transfer learning, and neural operator models to address UQ in complex dynamical systems. The framework exploits low-cost, lower-fidelity models alongside sparse high-fidelity simulations to achieve computational efficiency without sacrificing accuracy. The key highlights of the talk are (a) Bi-fidelity DeepONets for partially known systems, (b) ℓ₁-regularized training for sparse and interpretable representations, (c) Transfer learning architectures robust to biased low-fidelity models. Together, these advances pave the way for scalable, reliable, and efficient UQ in scientific and engineering applications.

👤 About the Speaker

Dr. Subhayan De is an Assistant Professor in the Department of Mechanical Engineering at Northern Arizona University (NAU). He leads a research group dedicated to developing probabilistic, data-driven frameworks that combine machine learning with physics-based modeling for the design of multi-scale, multi-functional structural systems and materials under uncertainty.

He earned his Ph.D. in Civil Engineering (2018) and M.S. in Electrical Engineering (2016) from the University of Southern California (USC), supported by the Viterbi Ph.D. Fellowship and the Gammel Scholarship.

📌 Follow the SMaRT Seminar Series for more talks at the intersection of AI, physics, and uncertainty quantification.

#UncertaintyQuantification #MultiFidelity #ScientificMachineLearning #NeuralOperators #DeepONet #JHUIITD #SciML #RiskAwareAI

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Multi-Fidelity Machine Learning for Uncertainty Quantification | Dr. S. De | JHU-IITD SMaRT Seminar

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Jeremy Oakley: Introduction to Uncertainty Quantification and Gaussian Processes - GPSS 2016

Jeremy Oakley: Introduction to Uncertainty Quantification and Gaussian Processes - GPSS 2016

AIC: Uncertainty Quantification in Machine Learning: From Aleatoric to Epistemic

AIC: Uncertainty Quantification in Machine Learning: From Aleatoric to Epistemic

Neural Constitutive Models | Sid Kumar | JHU-IITD SMaRT

Neural Constitutive Models | Sid Kumar | JHU-IITD SMaRT

Neuroscience-Inspired Deep Learning for Computational Mechanics | S. Garg | JHU-IITD SMaRT Seminar

Neuroscience-Inspired Deep Learning for Computational Mechanics | S. Garg | JHU-IITD SMaRT Seminar

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

Анализ конкурентов и целевой аудитории при помощи Нейросетей

Анализ конкурентов и целевой аудитории при помощи Нейросетей

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

Differentiable Physics for Scientific Discovery | Dr. Romit Maulik | JHU-IITD SMaRT Seminar

Differentiable Physics for Scientific Discovery | Dr. Romit Maulik | JHU-IITD SMaRT Seminar

MIT 6.S191: Evidential Deep Learning and Uncertainty

MIT 6.S191: Evidential Deep Learning and Uncertainty

Nvidia CEO Jensen Huang talks about his company's latest innovations at CES 2026

Nvidia CEO Jensen Huang talks about his company's latest innovations at CES 2026

Learning Hidden Physics and System Parameters with DeepONet | Dibakar Roy Sarkar | JHU-IITD SMaRT

Learning Hidden Physics and System Parameters with DeepONet | Dibakar Roy Sarkar | JHU-IITD SMaRT

Wiring the Quantum Future: Developing Interconnects for Superconducting Qubits - M. Mirhosseini

Wiring the Quantum Future: Developing Interconnects for Superconducting Qubits - M. Mirhosseini

Maria Schuld - How to rethink quantum machine learning - IPAM at UCLA

Maria Schuld - How to rethink quantum machine learning - IPAM at UCLA

Anima Anandkumar (CalTech):

Anima Anandkumar (CalTech): "Infusing Physics and Structure into Machine Learning"

Цепи Маркова — математика предсказаний [Veritasium]

Цепи Маркова — математика предсказаний [Veritasium]

Dr Dan Burisch, Sc  D  lecture at CalTech – A Peculiar Silicate Associated Phenomenon

Dr Dan Burisch, Sc D lecture at CalTech – A Peculiar Silicate Associated Phenomenon

Разведчик о том, как использовать людей

Разведчик о том, как использовать людей

Marcus Noack - Gaussian Process Approximation & Uncertainty Quantification for Autonomous Experiment

Marcus Noack - Gaussian Process Approximation & Uncertainty Quantification for Autonomous Experiment

Information Field Theory for Physics-Informed Inference | Prof. Ilias Bilionis | JHU-IITD SMaRT

Information Field Theory for Physics-Informed Inference | Prof. Ilias Bilionis | JHU-IITD SMaRT

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]