What Is Big Data | What Is Hadoop | Big Data Tutorial For Beginners
Автор: Tricks and Tips 1
Загружено: 2017-09-10
Просмотров: 95
Описание:
This video consists of four lessons of Big Data and Hadoop Tutorial. The lesson begins with the introduction of Big data and Hadoop developer and its objectives where you end up learning the fundamental concepts of hadoop, applying programming skills in MapReduce, Utilization of big data anlytic skills using pig and hive, Hbase data model and its components, and describes ZooKeeper and Sqoop.
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
Mastering Hadoop and related tools: The course provides you with an in-depth understanding of the Hadoop framework including HDFS, YARN, and MapReduce. You will learn to use Pig, Hive, and Impala to process and analyze large datasets stored in the HDFS, and use Sqoop and Flume for data ingestion.
Mastering real-time data processing using Spark: You will learn to do functional programming in Spark, implement Spark applications, understand parallel processing in Spark, and use Spark RDD optimization techniques. You will also learn the various interactive algorithm in Spark and use Spark SQL for creating, transforming, and querying data form.
As a part of the course, you will be required to execute real-life industry-based projects using CloudLab. The projects included are in the domains of Banking, Telecommunication, Social media, Insurance, and E-commerce. This Big Data course also prepares you for the Cloudera CCA175 certification.
What are the course objectives?
This course will enable you to:
1. Understand the different components of Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
16. Prepare for Cloudera Big Data CCA175 certification
Who should take this course?
Big Data career opportunities are on the rise, and Hadoop is quickly becoming a must-know technology for the following professionals:
1. Software Developers and Architects
2. Analytics Professionals
3. Senior IT professionals
4. Testing and Mainframe professionals
5. Data Management Professionals
6. Business Intelligence Professionals
7. Project Managers
8. Aspiring Data Scientists
9. Graduates looking to build a career in Big Data Analytics
Prerequisite:
1. As the knowledge of Java is necessary for this course, we are providing a complimentary access to “Java Essentials for Hadoop” course
2. For Spark we use Python and Scala and an Ebook has been provided to help you with the same
3. Knowledge of an operating system like Linux is useful for the course
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: