Build an AI Search API with LangChain, FastAPI, and MariaDB
Автор: MariaDB
Загружено: 2025-10-28
Просмотров: 778
Описание:
Alejandro Duarte shows how to use LangChain's MariaDB integration (langchain-mariadb) to implement vector search. This demo compares classic text search vs. semantic search using Gemini for evaluation.
►Github Repo: https://github.com/mariadb-developers...
►Try MariaDB cloud: https://mariadb.com/cloud-get-started/
►Book: https://mariadbfordevelopers.com
Chapters:
0:00 Setting up a free MariaDB serverless instance
0:54 Connecting to MariaDB from VS Code
1:32 Creating the database and importing data
3:07 Creating a Python project
3:53 Connecting to MariaDB from Python
5:07 Implementing text search (fulltext index)
7:24 Running the application
8:00 Creating a VectorStore
10:54 Ingesting vector embeddings
12:20 How LangChain and MariaDB store vectors
13:31 Implementing vector search (semantic)
14:59 Comparing results
►Explore MariaDB Products: https://mariadb.com/products
►Check out the MariaDB DeveloperHub: https://mariadb.com/developers/
►Get in touch with MariaDB experts via Slack: https://mariadb-community.slack.com/ (invite: https://r.mariadb.com/join-community-...)
MariaDB is making a big impact on the world. Whether you’re checking your bank account, buying a coffee, shopping online, making a phone call, listening to music, taking out a loan, or ordering takeout–MariaDB is the backbone of applications used every day. Companies small and large, including 75% of the Fortune 500 run MariaDB, touching the lives of billions of people. With massive reach through Linux distributions, enterprise deployments, and public clouds, MariaDB is uniquely positioned as the leading database for modern application development.
#MariaDB #Database #AI #Data #SQL #Cloud #python #langchain #gemini #programming
Повторяем попытку...
Доступные форматы для скачивания:
Скачать видео
-
Информация по загрузке: