ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

The eccentricity of the conjugate hyperbola to the hyperbola x^2-3y^2=1 is

Автор: MP Alam | Physics for JEE & NEET

Загружено: 2021-02-24

Просмотров: 800

Описание: What is Hyperbola?
A hyperbola is a locus of points in such a way that the distance to each focus is a constant greater than one. In other words, the locus of a point moving in a plane in such a way that the ratio of its distance from a fixed point (focus) to that from a fixed line (directrix) is a constant greater than 1.

(PS/PM) = e
Standard Equation of Hyperbola
The equation of the hyperbola is simplest when the centre of the hyperbola is at the origin and the foci are either on the x-axis or on the y-axis. The standard equation of a hyperbola is given as:

[(x2 / a2) – (y2 / b2)] = 1

where , b2 = a2 (e2 – 1)

Important Terms and Formulas of Hyperbola
There are certain terms related to a hyperbola which needs to be thoroughly understood to be able to get confident with this concept. Some of the most important terms related to hyperbola are:

Eccentricity (e): e2 = 1 + (b2 / a2) = 1 + [(conjugate axis)2 / (transverse axis)2]
Focii: S = (ae, 0) & S′ = (−ae, 0)
Directrix: x=(a/e), x = (−a / e)
Transverse axis:
The live segment A’A of length 2a in which the focii S’ and S both lie is called the transverse axis of the hyperbola.

Conjugate axis:
The line segment B’B of length 2b between the 2 points B’ = (0, -b) & B = (0, b) is called the conjugate axis of the hyperbola.

Principal axes:
The transverse axis & conjugate axis.

Vertices:
A = (a, 0) & A’ = (-a, 0)

Focal chord:
A chord which passes through a focus is called a focal chord.

Double ordinate:
Chord perpendicular to the transverse axis is called a double ordinate.

Latus Rectum:
Focal chord ⊥r to the transverse axis is called latus rectum.

Its length = (2b2 / a) = [(conjugate)2 / transverse] = 2a (e2 − 1)

The difference in focal distances is a constant

i.e. |PS−PS′| = 2a

Length of latus rectum = 2 e × (distance of focus from corresponding directrix)

End points of L.R : (± ae, ± b2 / a)

Centre:

The point which bisects every chord of the conic, drawn through it, is called the centre of the conic.

C: (0, 0) is the centre of [(x2 / a2) – (y2 / b2)] = 1

Note:

You will notice that the results for ellipse are also applicable for a hyperbola. You need to replace b2 by (−b2)
Practice Problems on Hyperbola
Example 1:

Find the equation of the hyperbola whose directrix is 2x + y = 1, focus (1, 2) and eccentricity √3.

Solution:

Let P(x, y) be any point on the hyperbola.

Draw PM perpendicular from P on the directrix,

Then by definition SP=ePM.

⇒ (SP)2 = e2 (PM)2

⇒ (x − 1)2 + (y − 2)2 = 3{(2x + y – 1) / √(4+1)}2

⇒ 5 (x2 + y2 − 2x − 4y + 5)

= 3 (4x2 + y2 + 1 + 4xy − 2y − 4x)

⇒ 7x2 − 2y2 + 12xy − 2x + 14y – 22 = 0

Which is the required hyperbola.

Example 2:

Find the eccentricity of the hyperbola whose latus rectum is half of its transverse axis.

Solution:

Let the equation of hyperbola be [(x2 / a2) – (y2 / b2)] = 1

Then transverse axis = 2a and latus – rectum = (2b2 / a)

According to question (2b2 / a) = (1/2) × 2a

⇒ 2b2 = a2 (Since, b2 = a2 (e2 − 1))

⇒ 2a2 (e2 − 1) = a2

⇒ 2e2 – 2 = 1

⇒ e2 = (3 / 2)

∴ e = √(3/2)

Hence the required eccentricity is √(3/2)

What is Conjugate Hyperbola?
2 hyperbolas such that transverse & conjugate axes of one hyperbola are respectively the conjugate & transverse axis of the other are called conjugate hyperbola of each other.

(x2 / a2) – (y2 /b2) = 1 & (−x2 / a2) + (y2 / b2) = 1 are conjugate hyperbolas of each other.

(y2 / b2) – (x2 / a2) = 1

a2 = b2 (e2 − 1)
Some Important Conclusions on Conjugate Hyperbola
(a) If are eccentricities of the hyperbola & its conjugate, the

(1 / e12) + (1 / e22) = 1

(b) The foci of a hyperbola & its conjugate are concyclic & form the vertices of a square.

(c) 2 hyperbolas are similar if they have the same eccentricities.

(d) 2 similar hyperbolas are equal if they have the same latus rectum.

Example 3:

Find the lengths of transverse axis and conjugate axis, eccentricity, the co-ordinates of foci, vertices, length of the latus-rectum and equations of the directrices of the following hyperbola 16x2 − 9y2 = −144.

Solution:

The equation 16x2 − 9y2 = −144 can be written as (x2 / 9) – (y2 / 16) = −1

This is of the form (x2 / a2) – (y2 / b2) = −1

∴ a2 = 9, b2 = 16

⇒ a=3, b=4

Length of transverse axis: The length of transverse axis = 2b = 8

Length of conjugate axis: The length of conjugate axis = 2a = 6
Auxiliary Circles of the Hyperbola
A circle drawn with centre C & transverse axis as a diameter is called the auxiliary circle of the hyperbola. The auxilary circle of hyperbola equation is given as:

Equation of the auxiliary circle is x2 + y2 = a2,

Note from the following figure that P & Q are called the “corresponding points” of the hyperbola & the auxiliary circle.

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
The eccentricity of the conjugate hyperbola to the hyperbola x^2-3y^2=1 is

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Show that the line xcosα+ysinα=p touches the hyperbola  x^2/a^2 -y^2/b^2 =1 if a^2 〖cos〗^2 α-b^2

Show that the line xcosα+ysinα=p touches the hyperbola x^2/a^2 -y^2/b^2 =1 if a^2 〖cos〗^2 α-b^2

Find the Vertices, Foci, Asymptotes and Graph the Hyperbola

Find the Vertices, Foci, Asymptotes and Graph the Hyperbola

Find the equation of the hyperbola whose directrix is 2x+y=1, focus (1, 2) and eccentricity √3.

Find the equation of the hyperbola whose directrix is 2x+y=1, focus (1, 2) and eccentricity √3.

Katastrofa samolotu z politykami / Pilne decyzje w Kremlu / Zawieszenie broni

Katastrofa samolotu z politykami / Pilne decyzje w Kremlu / Zawieszenie broni

The eccentricity of an ellipse whose pair of conjugate diameters are 2y = x and 3y = -2x is  | C...

The eccentricity of an ellipse whose pair of conjugate diameters are 2y = x and 3y = -2x is | C...

KINEMATICS

KINEMATICS

Hyperbola L1[General Equation, Conjugate Hyperbola & Shifted Hyperbola] Class 11 JEE Maths | Vedantu

Hyperbola L1[General Equation, Conjugate Hyperbola & Shifted Hyperbola] Class 11 JEE Maths | Vedantu

#2-Hyperbola--Conjugate Hyperbola and Asymptotes IIT JEE Maths

#2-Hyperbola--Conjugate Hyperbola and Asymptotes IIT JEE Maths

Let P(asecθ, btanθ) and Q(asecφ, btanφ), where  θ+φ=π/2, be two points on the hyperbola x^2/a^2 -y^2

Let P(asecθ, btanθ) and Q(asecφ, btanφ), where θ+φ=π/2, be two points on the hyperbola x^2/a^2 -y^2

ЧУДОВИЩНЫЙ ЗЕВОК в партии Нодирбека Абдусатторова! Вейк-ан-Зее 2026 (6 тур) | Шахматы

ЧУДОВИЩНЫЙ ЗЕВОК в партии Нодирбека Абдусатторова! Вейк-ан-Зее 2026 (6 тур) | Шахматы

UKRADŁEM NAJLEPSZE BRAINROTY w TSUNAMI BRAINROT w ROBLOX!

UKRADŁEM NAJLEPSZE BRAINROTY w TSUNAMI BRAINROT w ROBLOX!

A Respectable Woman in Nepali || Class 12 English Story Summary || By Kate Chopin || NEB - Gurubaa

A Respectable Woman in Nepali || Class 12 English Story Summary || By Kate Chopin || NEB - Gurubaa

14 Days 14 Chapters Live Launch | Shobhit Nirwan

14 Days 14 Chapters Live Launch | Shobhit Nirwan

Rosjanie o zmianach w ich życiu w ostatnich latach

Rosjanie o zmianach w ich życiu w ostatnich latach

Hyperbola 06 | Properties of Hyperbola | Lega Sir Maths

Hyperbola 06 | Properties of Hyperbola | Lega Sir Maths

The Half-closed Eyes of the Buddha and the Slowly Sinking Sun || Class 12 English Summary in Nepali

The Half-closed Eyes of the Buddha and the Slowly Sinking Sun || Class 12 English Summary in Nepali

EKIPA - TEMACIK (Friz, Wersow, Kostek)

EKIPA - TEMACIK (Friz, Wersow, Kostek)

Ten charges are placed on the circumference of a circle of radius R with constant angular separation

Ten charges are placed on the circumference of a circle of radius R with constant angular separation

Show that the set all points such that the difference of their distances from `(4,0)a n d(-4,0)`...

Show that the set all points such that the difference of their distances from `(4,0)a n d(-4,0)`...

A T shaped object with dimension shown in the figure, is lying on a smooth floor. A force F is appli

A T shaped object with dimension shown in the figure, is lying on a smooth floor. A force F is appli

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]