ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

AP Precalculus Practice Test: Unit 2 Question #31 Expand a Single Log into Multiple Logarithms

ap

advanced placement

practice

test

exam

multiple choice

math

hel

pre-calculus

precalc

pre-calc

precalculus

Function

domain

range

interval

asymptote

limit

continuity

sequence

series

arithmetic sequence

geometric sequence

radical

rational function

exponential function

logarithmic function

polynomial

quadratic

vertex

factoring

transformation

translation

reflection

dilation

amplitude

period

phase shift.

sine

unit

cosine

tangent

shorts

ap pre calc

ap precalc

Автор: Math Teacher GOAT

Загружено: 2024-11-18

Просмотров: 222

Описание: Please subscribe!    / nickperich  

My AP Precalculus Practice Tests are carefully designed to help students build confidence for in-class assessments, support their work on AP Classroom assignments, and thoroughly prepare them for the AP Precalculus exam in May.

To expand a single logarithmic expression into multiple logarithms, you can use the reverse of the logarithmic properties we discussed earlier. Here’s how you can expand a logarithmic expression step-by-step:

Step 1: Use the Product Rule
The *product rule* for logarithms is:

\[
\log_b(xy) = \log_b(x) + \log_b(y)
\]

This rule allows you to separate the logarithm of a product into the sum of two logarithms.

Step 2: Use the Quotient Rule
The *quotient rule* for logarithms is:

\[
\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)
\]

This rule allows you to separate the logarithm of a quotient into the difference of two logarithms.

Step 3: Use the Power Rule
The *power rule* for logarithms is:

\[
\log_b(x^a) = a \log_b(x)
\]

This rule allows you to bring the exponent down as a multiplier in front of the logarithm.

Example 1: Expand \( \log_3(2x) \)

1. **Apply the product rule**:
\[
\log_3(2x) = \log_3(2) + \log_3(x)
\]

So, \( \log_3(2x) \) expands to \( \log_3(2) + \log_3(x) \).

Example 2: Expand \( \log_5\left(\frac{y}{z}\right) \)

1. **Apply the quotient rule**:
\[
\log_5\left(\frac{y}{z}\right) = \log_5(y) - \log_5(z)
\]

So, \( \log_5\left(\frac{y}{z}\right) \) expands to \( \log_5(y) - \log_5(z) \).

Example 3: Expand \( \log_2(x^3y^2) \)

1. **Apply the product rule**:
\[
\log_2(x^3y^2) = \log_2(x^3) + \log_2(y^2)
\]

2. **Apply the power rule to each term**:
\[
\log_2(x^3) = 3 \log_2(x), \quad \log_2(y^2) = 2 \log_2(y)
\]

So, \( \log_2(x^3y^2) \) expands to \( 3 \log_2(x) + 2 \log_2(y) \).

Example 4: Expand \( \log_7\left(\frac{x^4}{y^2}\right) \)

1. **Apply the quotient rule**:
\[
\log_7\left(\frac{x^4}{y^2}\right) = \log_7(x^4) - \log_7(y^2)
\]

2. **Apply the power rule to each term**:
\[
\log_7(x^4) = 4 \log_7(x), \quad \log_7(y^2) = 2 \log_7(y)
\]

So, \( \log_7\left(\frac{x^4}{y^2}\right) \) expands to \( 4 \log_7(x) - 2 \log_7(y) \).

General Steps for Expanding Logs into Multiple Logarithms:
*For a product inside the log**, use the **product rule* to separate it into the sum of two logs.
*For a quotient inside the log**, use the **quotient rule* to separate it into the difference of two logs.
*For an exponent on the argument**, use the **power rule* to bring the exponent in front of the log.

By following these rules, you can expand a single logarithmic expression into multiple logarithms.

I have many informative videos for Pre-Algebra, Algebra 1, Algebra 2, Geometry, Pre-Calculus, and Calculus. Please check it out:

/ nickperich

Nick Perich
Norristown Area High School
Norristown Area School District
Norristown, Pa

#math #algebra #algebra2 #maths #math #shorts #funny #help #onlineclasses #onlinelearning #online #study

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
AP Precalculus Practice Test: Unit 2 Question #31 Expand a Single Log into Multiple Logarithms

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]