ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Efficiently Get Indexes of np.arange in a 2D Numpy Array

Numpy get index of arange in 2d array

python

numpy

Автор: vlogize

Загружено: 2025-10-09

Просмотров: 0

Описание: Discover how to efficiently find the index of `np.arange(4)` in a 2D Numpy array without using loops.
---
This video is based on the question https://stackoverflow.com/q/64720553/ asked by the user 'Vikash Balasubramanian' ( https://stackoverflow.com/u/4126652/ ) and on the answer https://stackoverflow.com/a/64720677/ provided by the user 'Andy L.' ( https://stackoverflow.com/u/10189214/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Numpy get index of arange in 2d array

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Get Indexes of np.arange in a 2D Numpy Array

When working with Numpy, one common challenge developers face is efficiently retrieving the indices of specific values in arrays, especially when they are structured in multiple dimensions. In this guide, we’ll explore how to extract the indices of np.arange from a 2D array, using a straightforward and efficient method.

The Problem

Consider the following code snippet that generates a 2D array with random permutations of numbers from 0 to 3:

[[See Video to Reveal this Text or Code Snippet]]

This will create an array similar to:

[[See Video to Reveal this Text or Code Snippet]]

Your task is to find the index of np.arange(4) within this array. Specifically, for each row, you want to identify where the value equivalent to the row index appears:

For Row 0: Index of 0

For Row 1: Index of 1

For Row 2: Index of 2

For Row 3: Index of 3

Ultimately, you wish to achieve a result like this:

[[See Video to Reveal this Text or Code Snippet]]

This process could be accomplished using a loop to iterate through each row. However, turning to an efficient Numpy solution can simplify the code significantly.

The Solution

Instead of looping through each row, you can utilize Numpy's capability to operate directly on arrays. Here is the elegant solution to your problem:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Solution

Let’s break down the solution for clarity:

Understanding np.arange(arr.shape[0]):

This generates an array of indices based on the number of rows in arr. For a 4-row array, it creates: [0, 1, 2, 3].

The Comparison arr == np.arange(arr.shape[0])[:, None]:

The expression np.arange(arr.shape[0])[:, None] reshapes the 1D array to a 2D one, which allows for broadcasting across the columns. This creates a comparison between each element in arr and the corresponding row index.

Finding Non-zero Indices:

np.nonzero() returns the indices of the non-zero elements. In this context, it retrieves the indices where the condition is true (i.e., where arr matches the row indices).

Selecting the Column Indices:

The [1] at the end of the statement extracts the column indices from the result containing both row and column indices.

Example Usage

To see this in action:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

As you can see, using Numpy to get the index of np.arange in a 2D array does not require cumbersome loops. By leveraging vectorized operations, you can write more efficient and cleaner code. This approach not only reduces the computational complexity but also enhances the readability of your program.

Next time you need to find indices in a multi-dimensional Numpy array, remember this powerful method!

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Efficiently Get Indexes of np.arange in a 2D Numpy Array

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]