ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

ML Robustness & Engineering - Andrew Ilyas (MIT)

Автор: Machine Learning Street Talk

Загружено: 2024-08-21

Просмотров: 6114

Описание: Andrew Ilyas, a PhD student at MIT who is about to start as a professor at CMU. We discuss Data modeling and understanding how datasets influence model predictions, Adversarial examples in machine learning and why they occur, Robustness in machine learning models, Black box attacks on machine learning systems, Biases in data collection and dataset creation, particularly in ImageNet and Self-selection bias in data and methods to address it.

MLST is sponsored by Brave:
The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmentated generation. Try it now - get 2,000 free queries monthly at http://brave.com/api

This is video 4/13 from ICML 2024

Andrew's site:
https://andrewilyas.com/
https://x.com/andrew_ilyas

TOC:
00:00:00 - Introduction and Andrew's background
00:03:52 - Overview of the machine learning pipeline
00:06:31 - Data modeling paper discussion
00:26:28 - TRAK: Evolution of data modeling work
00:43:58 - Discussion on abstraction, reasoning, and neural networks
00:53:16 - "Adversarial Examples Are Not Bugs, They Are Features" paper
01:03:24 - Types of features learned by neural networks
01:10:51 - Black box attacks paper
01:15:39 - Work on data collection and bias
01:25:48 - Future research plans and closing thoughts

Pod version: https://podcasters.spotify.com/pod/sh...

References:
Adversarial Examples Are Not Bugs, They Are Features
https://arxiv.org/pdf/1905.02175

TRAK: Attributing Model Behavior at Scale
https://arxiv.org/pdf/2303.14186

Datamodels: Predicting Predictions from Training Data
https://arxiv.org/pdf/2202.00622

Adversarial Examples Are Not Bugs, They Are Features
https://arxiv.org/pdf/1905.02175

IMAGENET-TRAINED CNNS
https://arxiv.org/pdf/1811.12231

ZOO: Zeroth Order Optimization Based Black-box
https://arxiv.org/pdf/1708.03999

A Spline Theory of Deep Networks
https://proceedings.mlr.press/v80/bal...

Scaling Monosemanticity
https://transformer-circuits.pub/2024...

Adversarial Examples Are Not Bugs, They Are Features
https://gradientscience.org/adv/

Adversarial Robustness Limits via Scaling-Law and Human-Alignment Studies
https://proceedings.mlr.press/v235/ba...

Prior Convictions: Black-Box Adversarial Attacks with Bandits and Priors
https://arxiv.org/abs/1807.07978

Estimation of Standard Auction Models
https://arxiv.org/abs/2205.02060

From ImageNet to Image Classification: Contextualizing Progress on Benchmarks
https://arxiv.org/abs/2005.11295

Estimation of Standard Auction Models
https://arxiv.org/abs/2205.02060

What Makes A Good Fisherman? Linear Regression under Self-Selection Bias
https://arxiv.org/abs/2205.03246

Towards Tracing Factual Knowledge in Language Models Back to the
Training Data [Akyürek]
https://arxiv.org/pdf/2205.11482

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
ML Robustness & Engineering - Andrew Ilyas (MIT)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Michael Levin - Why Intelligence Isn't Limited To Brains.

Michael Levin - Why Intelligence Isn't Limited To Brains.

The Elegant Math Behind Machine Learning

The Elegant Math Behind Machine Learning

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

ШЕНДЕРОВИЧ: Удар по дворцу Путина — был ли? Обратная связь от войны. Трамп морозит. Ответ Каспарову

ШЕНДЕРОВИЧ: Удар по дворцу Путина — был ли? Обратная связь от войны. Трамп морозит. Ответ Каспарову

This man builds intelligent machines

This man builds intelligent machines

Unreasonably effective AI | Demis Hassabis

Unreasonably effective AI | Demis Hassabis

The Mathematical Foundations of Intelligence [Professor Yi Ma]

The Mathematical Foundations of Intelligence [Professor Yi Ma]

Using Bayesian Approaches & Sausage Plots to Improve Machine Learning - Computerphile

Using Bayesian Approaches & Sausage Plots to Improve Machine Learning - Computerphile

AI can't cross this line and we don't know why.

AI can't cross this line and we don't know why.

Terence Tao at IMO 2024: AI and Mathematics

Terence Tao at IMO 2024: AI and Mathematics

How Do AI Models Actually Think? [Dr. Laura Ruis]

How Do AI Models Actually Think? [Dr. Laura Ruis]

Демис Хассабис: Будущее ИИ, симуляция реальности, физика, игры | Лекс Фридман Подкаст #475

Демис Хассабис: Будущее ИИ, симуляция реальности, физика, игры | Лекс Фридман Подкаст #475

Николас Карлини – Некоторые уроки состязательного машинного обучения

Николас Карлини – Некоторые уроки состязательного машинного обучения

Как крутят нейронки на периферийных устройствах / База по Edge Computing от инженера из Qualcomm

Как крутят нейронки на периферийных устройствах / База по Edge Computing от инженера из Qualcomm

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Why STORYTELLING SKILLS Matter at MIT

Why STORYTELLING SKILLS Matter at MIT

This is why Deep Learning is really weird.

This is why Deep Learning is really weird.

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

Michael Hopkins: My best advice to young mathematicians (2022)

Michael Hopkins: My best advice to young mathematicians (2022)

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]