ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Lecture 16: Detection and Segmentation

Michigan Online

Online Learning

Education

Object detection

R-CNN

Fast R-CNN

Faster R-CNN

RoI pool

RoI align

CornerNet

semantic segmentation

fully-convolutional networks

upsampling

unpooling

transposed convolution

convolution as matrix multiplication

things and stuff

instance segmentation

Mask R-CNN

panoptic segmentation

keypoint estimation

dense captioning

Автор: Michigan Online

Загружено: 2020-08-10

Просмотров: 42275

Описание: Lecture 16 continues our discussion of localizing objects in images with neural networks. We recap the R-CNN family of methods from the previous lecture and discuss how these networks behave differently during training and testing. We briefly discuss anchor-free object detectors such as CornerNet. We then move on to other localization tasks, and see how fully-convolutional networks can be used for semantic segmentation. This leads to a discussion of different methods of upsampling in neural networks, including max unpooling and transposed convolution. We then discuss the task of instance segmentation, where neural networks must both identify the object instances in each image as well as the pixels belonging to each object. We see how the Mask R-CNN architecture generalizes Faster R-CNN to perform instance segmentation. We briefly discuss other localization tasks including panoptic segmentation and keypoint estimation.

Slides: http://myumi.ch/2Del3
_________________________________________________________________________________________________

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and fine-tuning networks for visual recognition tasks.

Course Website: http://myumi.ch/Bo9Ng

Instructor: Justin Johnson http://myumi.ch/QA8Pg

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Lecture 16: Detection and Segmentation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Lecture 17: 3D Vision

Lecture 17: 3D Vision

Lecture 19: Generative Models I

Lecture 19: Generative Models I

Lecture 11 | Detection and Segmentation

Lecture 11 | Detection and Segmentation

Lecture 6: Backpropagation

Lecture 6: Backpropagation

C4W3L08 Анкерные коробки

C4W3L08 Анкерные коробки

CV3DST - Semantic Segmentation

CV3DST - Semantic Segmentation

Mask Region based Convolution Neural Networks - EXPLAINED!

Mask Region based Convolution Neural Networks - EXPLAINED!

Lecture 15: Object Detection

Lecture 15: Object Detection

Lecture 8: CNN Architectures

Lecture 8: CNN Architectures

Обнаружение объектов и сегментация изображений | Глубокое обучение | Машинное обучение

Обнаружение объектов и сегментация изображений | Глубокое обучение | Машинное обучение

Hough Transform | Boundary Detection

Hough Transform | Boundary Detection

Lecture 9: Hardware and Software

Lecture 9: Hardware and Software

CV3DST - Instance and panoptic segmentation

CV3DST - Instance and panoptic segmentation

How convolutional neural networks work, in depth

How convolutional neural networks work, in depth

Mask R-CNN

Mask R-CNN

73 - Image Segmentation using U-Net - Part1 (What is U-net?)

73 - Image Segmentation using U-Net - Part1 (What is U-net?)

Lecture 13: Attention

Lecture 13: Attention

MedAI #114: Ambiguous medical image segmentation using diffusion models | Aimon Rahman

MedAI #114: Ambiguous medical image segmentation using diffusion models | Aimon Rahman

Lecture 18: Videos

Lecture 18: Videos

Обнаружение объектов. Часть 1: R-CNN, скользящее окно и выборочный поиск

Обнаружение объектов. Часть 1: R-CNN, скользящее окно и выборочный поиск

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]