ycliper

Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
Скачать

Chunking Strategies for RAG Applications!

chunking strategies

RAG applications

document chunking

semantic chunking

Chunking for RAG

vector database

LangChain

singlestore

embedding models

embedding chunks

HuggingFace

RAG pipeline

dividing document into chunks

AI apps

ML Apps

naive chunking strategies

choosing the chunking strategy

chunking and splitting

LLM Applications

Optimizing RAG

Автор: Pavan Belagatti

Загружено: 2024-07-21

Просмотров: 1749

Описание: LLMs are bound to hallucinate and then we have different strategies to mitigate this hallucination behaviour of LLMs. One such strategy is Retrieval Augmented Generation (RAG), where a knowledge base is already augmented/provided to the LLM to retrieve the information from and this way LLMs won't hallucinate since the knowledge base is already specified.

RAG involves a step by step process of loading the documents/data, splitting the documents into chunks using any AI framework such as LangChain or LlamaIndex, and vector embeddings generation for the data and storing these embeddings in a vector database.

So, broadly we can divide the RAG into two main parts, Storing and Retrieval.

While enhancing our RAG pipeline, one thing we need to look at is the retrieval strategy and techniques involved. We can improve retrieval in RAG using the proper chunking strategy. But finding the right chunk size for any given text is a very hard question in general.

Today, we will see how semantic chunking works.

Semantic Chunking considers the relationships within the text. It divides the text into meaningful, semantically complete chunks. This approach ensures the information’s integrity during retrieval, leading to a more accurate and contextually appropriate outcome.

Let's experiment with Semantic chunking & see the results.
Here is the complete Notebook code: https://github.com/pavanbelagatti/Sem...

You need SingleStore free account to get started with the tutorial.
Sign up for free to SingleStore here: https://bit.ly/3Y2I4cV

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Chunking Strategies for RAG Applications!

Поделиться в:

Доступные форматы для скачивания:

Скачать видео

  • Информация по загрузке:

Скачать аудио

Похожие видео

Enhancing RAG Applications Using Knowledge Graphs!

Enhancing RAG Applications Using Knowledge Graphs!

Practical RAG - Choosing the Right Embedding Model, Chunking Strategy, and More

Practical RAG - Choosing the Right Embedding Model, Chunking Strategy, and More

The 5 Levels Of Text Splitting For Retrieval

The 5 Levels Of Text Splitting For Retrieval

RAG Chunking Strategies [Top 11] | Semantic Chunking to LLM Chunking | Learn RAG from Scratch

RAG Chunking Strategies [Top 11] | Semantic Chunking to LLM Chunking | Learn RAG from Scratch

The BEST Way to Chunk Text for RAG

The BEST Way to Chunk Text for RAG

How to build a RAG using DeepSeek R1 in 5 minutes | RAG using Deepseek , Langchain, FAISS, Python

How to build a RAG using DeepSeek R1 in 5 minutes | RAG using Deepseek , Langchain, FAISS, Python

Chunking Best Practices for RAG Applications

Chunking Best Practices for RAG Applications

Why Build Enterprise RAG with Postgres?

Why Build Enterprise RAG with Postgres?

Text Chunking in RAG: Essential Guide with Anton from ChromaDB

Text Chunking in RAG: Essential Guide with Anton from ChromaDB

ГАЛЛЯМОВ:

ГАЛЛЯМОВ: "Путин с зеленым лицом орал на своих генералов": что (не)случилось в Кремле, Трамп, КОГДА?

© 2025 ycliper. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]